Effect of backbone conformation and its defects on electronic properties and assessment of the stabilizing role of π-π interactions in aryl substituted polysilylenes studied by DFT on deca[methyl(phenyl)silylene]s
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
27158259
PubMed Central
PMC4858925
DOI
10.1186/s13065-016-0173-0
PII: 173
Knihovny.cz E-resources
- Keywords
- Density functional calculations, Kink, Methyl(phenyl)silylene, Stacking interaction, UV/Vis spectroscopy,
- Publication type
- Journal Article MeSH
BACKGROUND: Recent efforts in the field of mesoscale effects on the structure and properties of thin polymer films call to revival interest in conformational structure and defects of a polymer backbone which has a crucial influence on electronic properties of the material. Oligo[methyl(phenyl)silylene]s (OMPSi) as exemplary molecules were studied theoretically by DFT in the form of optimal decamers and conformationally disrupted decamers (with a kink). RESULTS: We proved that transoid backbone conformation is true energy minimum and that a kink in the backbone causes significant hypsochromic shift of the absorption maximum (λ max ), while backbone conformation altering from all-eclipsed to all-anti affects λ max in the opposite way. π-π stacking was investigated qualitatively through optimal geometry of OMPSi and mutual position of their phenyls along the backbone and also quantitatively by an evaluation of molecular energies obtained from single point calculations with functionals, which treat the dispersion effect in the varying range of interaction. CONCLUSIONS: The kink was identified as a realistic element of the conformational structure that could be able to create a bend in a real aryl substituted polysilylene chain because it is stabilized by attractive π-π interactions between phenyl side groups.Graphical abstract.
See more in PubMed
Mark JE, Allcock HR, West R. Inorganic polymers. New York: Oxford University Press; 2003.
Karatsu T. Photochemistry and photophysics of organomonosilane and oligosilanes: updating their studies on conformation and intramolecular interactions. J Photochem Photobiol, C. 2008;9:111–137. doi: 10.1016/j.jphotochemrev.2008.06.001. DOI
Nespurek S. From one-dimensional organosilicon structures to polymeric semiconductors: optical and electrical properties. J Non-Cryts Sol. 2002;299–302:1033–1041. doi: 10.1016/S0022-3093(01)01129-2. DOI
Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J. Optically active polysilanes. Ten years of progress and new polymer twist for nanoscience and nanotechnology. Polym J. 2003;35:297–344. doi: 10.1295/polymj.35.297. DOI
Fukawa S, Ohta H. Structure and orientation of vacuum-evaporated poly(di-methyl silane) film. Thin Sol Films. 2003;438–439:48–55. doi: 10.1016/S0040-6090(03)00755-7. DOI
Fujiki MJ. Switching handedness in optically active polysilanes. Organomet Film. 2003;685:15–34. doi: 10.1016/S0022-328X(03)00638-7. DOI
Michl J, West R. Conformations of linear chains. Systematics and suggestions for nomenclature. Acc Chem Res. 2000;33:821–823. doi: 10.1021/ar0001057. PubMed DOI
Fogarty H-A, Ottoson C-H, Michl J. The five favored backbone conformations of n-Si4Et10: cisoid, gauche, ortho, deviant, and transoid. J Mol Struc-Theochem. 2000;506:243–255. doi: 10.1016/S0166-1280(00)00416-4. DOI
Nguyen TQ, Martini I, Liu J, Schwartz BJ. Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J Phys Chem B. 2000;104:237–255. doi: 10.1021/jp993190c. DOI
Mirzov O, Scheblykin IG. Photoluminescence spectra of a conjugated polymer: from films and solutions to single molecule. Phys Chem Chem Phys. 2006;8:5569–5576. doi: 10.1039/b612073c. PubMed DOI
Urbanek P, Kuritka I. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: a photoluminescence study on representative σ-conjugated polymers. J Lumin. 2015;168:261–268. doi: 10.1016/j.jlumin.2015.08.022. DOI
Urbanek P, Kuritka I, Danis S, Touskova J, Tousek J. Thickness threshold of structural ordering in thin MEH-PPV films. Polymer. 2014;55:4050–4056. doi: 10.1016/j.polymer.2014.05.054. DOI
Gmucova K, Nadazdy V, Schauer F, Kaiser M, Majkova E. Electrochemical Spectroscopic Methods for the Fine Band Gap Electronic Structure Mapping in Organic Semiconductors. J Phys Chem C. 2015;119:15926–15934. doi: 10.1021/acs.jpcc.5b04378. DOI
Nadazdy V, Schauer F, Gmucova K. Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors. Appl Phys Lett C. 2014;119:15926–15934.
Overney RM, Buenviaje C, Luginbuhl R, Dinelli F. Glass and structural transitions measured at polymer surfaces on the nanoscale. J Therm Anal Cal. 2000;59:205–225. doi: 10.1023/A:1010196214867. DOI
Benight SJ, Knorr DB, Jr, Johnson LE, Sullivan PA, Lao D, Sun J, Kocherlakota LS, Elangovan A, Robinson BH, Overney RM, Dalton LR. Nano-engineering lattice dimensionality for a soft matter organic functional material. Adv Mater. 2012;24:3263–3268. doi: 10.1002/adma.201104949. PubMed DOI
Despotopoulou MM, Frank CW, Miller RD, Rabolt JF. Role of the restricted geometry on the morphology of ultrathin poly(di-n-hexylsilane) films. Macromolecules. 1995;28:6687–6688. doi: 10.1021/ma00123a042. DOI
Tsuji H, Michl J, Tamao K. Recent experimental and theoretical aspects of the conformational dependence of UV absorption of short chain peralkylated oligosilanes. J Organomet Chem. 2003;685:9–14. doi: 10.1016/S0022-328X(03)00162-1. DOI
Teramae H, Matsumoto N. Theoretical study on gaucge-kink in polysilane polymer. Sol State Com. 1996;99:917–919. doi: 10.1016/0038-1098(96)00333-X. DOI
Hanulikova B, Kuritka I. Manifestations of conformational defects in electronic spectra of polysilanes—a theoretical study. Macromol Symp. 2014;339:100–111. doi: 10.1002/masy.201300143. DOI
Hanulikova B, Kuritka I. Theoretical study of polaron binding energy in conformationally disrupted oligosilanes. J Mol Model. 2014;20:2442–2450. doi: 10.1007/s00894-014-2442-y. PubMed DOI
Hunter CA, Sanders JKM. The nature of π–π interactions. J Am Chem Soc. 1990;112:5525–5534. doi: 10.1021/ja00170a016. DOI
Chung SJ, Kim DH. Intramolecular edge-to-face aromatic-aromatic ring interactionsin 3-(3-aryl-2-isopropylpropanoyl)-4-phenylmethyl-1,3-oxazolidin-2-ones prepared from Evans `chiral auxiliary. Bull Kor Chem. 1997;18:1324–1327.
Hunter CA, Singh J, Thornton JM. π–π interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J Mol Biol. 1991;218:837–846. doi: 10.1016/0022-2836(91)90271-7. PubMed DOI
Meyer EA, Castellano RK, Diederich F. Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed. 2003;42:1210–1250. doi: 10.1002/anie.200390319. PubMed DOI
Mignon P, Loverix S, De Proft F, Geerlings P. Influence of stacking on hydrogen bonding: quantum chemical study on pyridine-benzene model complexes. J Phys Chem. 2004;108:6038–6044. doi: 10.1021/jp049240h. DOI
Akher FB, Ebrahimi A. π-stacking effects on the hydrogen bonding capacity of methyl 2-naphthoate. J Mol Graph Model. 2015;61:115–122. doi: 10.1016/j.jmgm.2015.06.013. PubMed DOI
Hunter CA, Lawson KR, Perkins J, Urch CJ. Aromatic interactions. J Chem Soc, Perkin Trans. 2001;2:651–669. doi: 10.1039/b008495f. DOI
Waters ML. Aromatic interactions in model systems. Curr Opin Chem Biol. 2002;6:736–741. doi: 10.1016/S1367-5931(02)00359-9. PubMed DOI
Martinez CR, Iverson BL. Rethinking the term ‘‘pi-stacking’’. Chem Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI
Kohn W, Sham WL. Self-consistent equations including exchange and correlation effect. Phys Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Biswas AK, Lo R, Ganguly B. First principles studies toward the design of silylene superbases: a density functional theory study. J Phys Chem A. 2013;117:3109–3117. doi: 10.1021/jp401076j. PubMed DOI
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1964;52:997–1000. doi: 10.1103/PhysRevLett.52.997. DOI
Pan X-Y, Sahni V. New perspectives on the fundamental theorem of density functional theory. Int J Quantum Chem. 2008;108:2756–2762. doi: 10.1002/qua.21826. DOI
Pichaandi KR, Mague JT, Fink MJ. Synthesis, photochemical decomposition and DFT studies of 2,2,3,3-tetramethyl-1,1-bis(dimethylphenylsilyl)silacyclopropane. J Organomet Chem. 2015;791:163–168. doi: 10.1016/j.jorganchem.2015.05.022. DOI
Y-q Ding, Q-a Qiao, Wang P, Chen G-w, Han J-j, Xu Q, Feng S-y. A DFT study of electronic structures of thiophene-based organosilicon compounds. Chem Phys. 2010;367:167–174. doi: 10.1016/j.chemphys.2009.11.016. DOI
Boo BH, Im S, Lee S. Ab initio and DFT studies of the thermal rearrangement of trimethylsilyl(methyl)silylene: remarkable rearrangements of silicon intermediates. J Comput Chem. 2009;31:154–163. doi: 10.1002/jcc.21254. PubMed DOI
Zhao Y, Truhlar DG. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys. 2006;125:194101. doi: 10.1063/1.2370993. PubMed DOI
Walker M, Harvey AJA, Sen A, Dessent CEH. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A. 2013;117:12590–12600. doi: 10.1021/jp408166m. PubMed DOI
Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10:6615–6620. doi: 10.1039/b810189b. PubMed DOI
Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P. B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. Cryst Eng Comm. 2008;10:405–410. doi: 10.1039/B715018K. DOI
Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Jr, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, III, Kong J, Krylov AI, Gilla PMW, Head-Gordon M. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys. 2006;8:3172–3191. doi: 10.1039/B517914A. PubMed DOI
Frisch MJ, Pople JA, Binkley JS. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys. 1984;80:3265–3269. doi: 10.1063/1.447079. DOI
Hehre WJ. Guide to molecular mechanics and quantum chemical calculations. Irvine: Wavefunction Inc.; 2003.
Nespurek S, Wang G, Yoshino K. Polysilanes - Advanced materials for optoelectronics. J Optoelectron Adv M. 2005;7:223–230.