Influencing fatty acid composition of yeasts by lanthanides
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
27339307
DOI
10.1007/s11274-016-2093-5
PII: 10.1007/s11274-016-2093-5
Knihovny.cz E-resources
- Keywords
- Fatty acids, Lanthanides, Microbial lipids, Non-oleaginous yeasts, Oleaginous yeasts,
- MeSH
- Biomass MeSH
- Culture Media chemistry MeSH
- Yeasts drug effects growth & development MeSH
- Lanthanoid Series Elements pharmacology MeSH
- Fatty Acids biosynthesis MeSH
- Lipid Metabolism drug effects MeSH
- Industrial Microbiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Culture Media MeSH
- Lanthanoid Series Elements MeSH
- Fatty Acids MeSH
The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes.
See more in PubMed
FEMS Yeast Res. 2015 Nov;15(7):null PubMed
Chemosphere. 2010 Nov;81(10):1320-7 PubMed
Appl Microbiol Biotechnol. 2013 Jul;97(14):6581-8 PubMed
Front Microbiol. 2015 Jan 28;6:2 PubMed
Environ Sci Technol. 2011 May 1;45(9):4096-101 PubMed
Folia Microbiol (Praha). 2016 Jul;61(4):329-35 PubMed
Bioresour Technol. 2004 Dec;95(3):287-91 PubMed
Bioresour Technol. 2015 Sep;192:726-34 PubMed
Bioresour Technol. 2013 Sep;143:18-24 PubMed
J Appl Microbiol. 2013 May;114(5):1357-68 PubMed
Plant J. 1993 Jan;3(1):83-110 PubMed
Appl Microbiol Biotechnol. 2004 Feb;63(6):635-46 PubMed
Bioresour Technol. 2011 May;102(10):6134-40 PubMed
Biochim Biophys Acta. 2001 Dec 1;1515(2):189-201 PubMed
Bioresour Technol. 2012 Jun;114:443-9 PubMed
Eur J Biochem. 2002 Aug;269(15):3821-30 PubMed
Appl Microbiol Biotechnol. 2011 May;90(4):1219-27 PubMed
Biotechnol Prog. 2012 May-Jun;28(3):715-22 PubMed
Bioresour Technol. 2011 Feb;102(3):2695-701 PubMed
Environ Sci Pollut Res Int. 2002;9(2):143-8 PubMed
Bioresour Technol. 2013 Sep;144:360-9 PubMed
Appl Microbiol Biotechnol. 2015 Feb;99(4):1911-22 PubMed
Can J Biochem Physiol. 1959 Aug;37(8):911-7 PubMed
J Plant Physiol. 2014 Jan 15;171(2):154-63 PubMed
Bioresour Technol. 2013 Jun;137:124-31 PubMed
Dalton Trans. 2008 Jun 7;(21):2832-8 PubMed
Biotechnol Adv. 2013 Mar-Apr;31(2):129-39 PubMed
J Dairy Sci. 2000 May;83(5):1016-27 PubMed
Sci Total Environ. 2002 Jul 3;293(1-3):97-105 PubMed