• This record comes from PubMed

Kazakh Ziziphora Species as Sources of Bioactive Substances

. 2016 Jun 25 ; 21 (7) : . [epub] 20160625

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 27347924
PubMed Central PMC6274025
DOI 10.3390/molecules21070826
PII: molecules21070826
Knihovny.cz E-resources

Ziziphora species represent the prototypical example of the Lamiaceae family. The phytochemicals present in Ziziphora include monoterpenic essential oils, triterpenes and phenolic substances belonging to the flavonoids. In Kazakh traditional medicine, Ziziphora species possess several medicinal uses. In particular, Z. bungeana Lam. and Z. clinopodioides Lam. are used for the treatment of illnesses related to the cardiovascular system or to combat different infections. Unfortunately, the majority of the information about the complex Ziziphora species is only available in Russian and Chinese language, therefore, we decided gather all available information on Kazakhstan Ziziphora, namely its content compounds, medicinal uses and published patents, to draw the attention of scientists to this very interesting plant with high medicinal potential.

See more in PubMed

Bimursaev A.A. Dissertation Thesis. Khakh National Medical University; Alma-Ata, Russia: 1985. Fitochemitscheskoe Izutchenie Zizifory bungovskoj (Phytochemical Study of Ziziphora bungeana)

Xi-wen L., Hedge I.C. Lamiaceae. In: Xiwen Z.W., Raven P.H., editors. Flora of China. Volume 17 Science Press; Beijing, China: Missouri Botanical Garden Press; St. Louis, MO, USA: 1994.

Pavlov N.V. Flora Kazakhstan. Academia nauk KazSSR; Almaty, Russia: 1964.

Furukawa M., Oikawa N., Imohata T., Makino M., Ogawa S., Iida T., Fujimoto Y., Kitanaka S. Monoterpene Glucosides from Ziziphora clinopodioides (Labiatae) Chem. Pharm. Bull. 2012;60:397–401. doi: 10.1248/cpb.60.397. PubMed DOI

Tian S., Shi Y., Zhou X., Ge L., Upur H. Total polyphenolic (flavonoids) content and antioxidant capacity of different Ziziphora clinopodioides Lam. Extracts. Pharmacog. Mag. 2011;7:65–68. PubMed PMC

Baytop T., Turkiyede B., Tedavi I.U. Yayinlari. Eczacilik Fak. 1996;40:444.

Masrournia M., Shams A. Elemental Determination and Essential Oil Composition of Ziziphora clinopodioides and Consideration of its Antibacterial Effects. Asian J. Chem. 2013;25:6553–6556.

Beikmohammadi M. The Evaluation of Medicinal Properties of Ziziphora clinopodioides. World Appl. Sci. J. 2011;12:1635–1638.

Ozturk Y., Aydin S., Tecik B., Baser K.H.C. Effects of essential oils from certain Ziziphora species on swimming performance in mice. Phytother. Res. 1995;9:225–227. doi: 10.1002/ptr.2650090315. DOI

Tarakci Z., Coskun H., Tuncturk Y. Some properties of fresh and ripened herby cheese, a traditional variety produced in Turkey. Food Technol. Biotech. 2004;42:47–50.

Ozturk S., Ercisli S. Antibacterial activity and chemical constitutions of Ziziphora clinopodioides. Food Control. 2007;18:535–540. doi: 10.1016/j.foodcont.2006.01.002. DOI

Ghassemi N., Ghanadian M., Ghaemmaghami L., Kiani H. Development of a Validated HPLC/Photodiode Array Method for the Determination of Isomenthone in the Aerial Parts of Ziziphora tenuior L. Jundishapur J. Nat. Pharm. Prod. 2013;8:180–186. doi: 10.17795/jjnpp-12504. PubMed DOI PMC

Sezik E., Yesilada E., Shadidoyatov H., Kulivey Z., Nigmatullaev A.M., Aripov H.N., Takaishi Y., Takeda Y., Honda G. Folk medicine in Uzbekistan I. Toshkent, Djizzax, and Samarqand provinces. J. Ethnopharmacol. 2004;92:197–207. doi: 10.1016/j.jep.2004.02.016. PubMed DOI

Ajiaikebaier A., Shi H., Abuduwufuer R. Preparation and Use of Ziziphora General Flavone. CN 101513448 B. Chinese Patent. 2012 Aug 1;

Ding W., Yang T., Liu F., Tian S. Effect of different growth stages of Ziziphora clinopodioides Lam. on its chemical composition. Pharmacog. Mag. 2014;10 doi: 10.4103/0973-1296.127329. PubMed DOI PMC

Razmjoue D., Zarei Z. Study on the ecological specifications effects (climate and height) on chemical compounds of Ziziphora medicinal plant essential oil (Ziziphora clinopodioides Lam.) in Fars province, Iran. J. Chem. Biol. Phys. Sci. 2015;5:3049–3066.

Jamzad M., Jamzad Z., Mokhber F., Ziareh S., Yari M. Variation in essential oil composition of Mentha longifolia var. chlorodichtya Rech.f. and Ziziphora clinopodiodes Lam. growing in different habitats. J. Med. Plant Res. 2013;7:1618–1623.

Sonboli A., Atri M., Shafiei S. Intraspecific variability of the essential oil of Ziziphora clinopodioides ssp. rigida from Iran. Chem. Biodivers. 2010;7:1784–1789. doi: 10.1002/cbdv.200900336. PubMed DOI

Khodaverdi-Samani H., Pirbalouti A.G., Shirmardi H.-A., Malekpoor F. Chemical composition of essential oils of Ziziphora clinopodioides Lam. (endemic Iranian herb) collected from different natural habitats. Indian J. Trad. Know. 2015;14:57–62.

Jeppesen A.S., Soelberg J., Jäger A.K. Antibacterial and COX-1 Inhibitory Effect of Medicinal Plants from the Pamir Mountains, Afghanistan. Plants. 2012;1:74–81. doi: 10.3390/plants1020074. PubMed DOI PMC

Salehi P., Sonboli A., Eftekhari F., Nejad-Ebrahimi S., Yousefzadi M. Essential Oil Composition, Antibacterial and Antioxidant Activity of the Oil and Various Extracts of Ziziphora clinopodioides subsp. rigida (BOISS.) RECH.f. from Iran. Biol. Pharm. Bull. 2005;10:1892–1896. doi: 10.1248/bpb.28.1892. PubMed DOI

Mahboubi A., Kamalinejad M., Ayatollahi A.M., Babaeian M. Total phenolic content and antibacterial activity of five plants of Labiatae against four foodborne and some other bacteria. Iranian J. Pharm. Res. 2014;13:559–566. PubMed PMC

Amini-Shirazi N., Hoseini A., Rajnbar A., Mohammadirad A., Khoshakhlagh P., Yasa N., Abdollahi M. Inhibition of Tumor Necrosis Factor and Nitrosative/Oxidative Stresses by Ziziphora Clinopodioides (Kahlioti); A Molecular Mechanism of Protection Against Dextran Sodium Sulfate-Induced Colitis in Mice. Toxicol. Mech. Methods. 2009;19:183–189. doi: 10.1080/15376510701533996. PubMed DOI

Ghafari H., Yasa N., Mohammadirad A., Dehghan G., Zamani M.J., Nikfar S., Khorasani R., Minaie B., Abdollahi M. Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum. Exp. Toxicol. 2006;25:325–332. doi: 10.1191/0960327105ht626oa. PubMed DOI

Azadmehr A., Latifi R., Mosalla S., Hajiaghaee R., Shahnazi M. Immunomodulatory effects of Ziziphora tenuior L. extract on the dendritic cells. Daru. 2014;22:63. doi: 10.1186/s40199-014-0063-8. PubMed DOI PMC

Ghahhari J., Vaezi G., Shariatifar N., Zendehdel K.M. The study of hydroalcoholic extract of Ziziphora tenuior on visceral pain with writhing test in mice. Horizon. Med. Sci. 2009;15:24–29.

Ghazanfari T., Yaraee R., Shams J., Rahmati B., Radjabian T., Hakimzadeh H. Cytotoxic effect of four herbal medicines on gastric cancer (AGS) cell line. Food Agric. Immunol. 2013;24 doi: 10.1080/09540105.2011.637549. DOI

Entezary A., Neamatshahi M.M., Khodaparast M.H.H., Farjam M.K.N., Nematshahi N., Mohammadi M. The effects of adding extracts of Ziziphora (Ziziphora tenuir) as flavoring to chewing gums and the study of the release of caffeine from these extracts. Eur. J. Exp. Biol. 2013;3:307–312.

Sadeghi B., Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrosc. Acta Pt. A Mol. Biomol. Spectr. 2015;134:310–315. doi: 10.1016/j.saa.2014.06.046. PubMed DOI

Weijun Y., Bo C., Yan M., Tuerxunjiang D., Wencai X., Chong L., Jiang H., Hairula M., Tuhehongda Z. Compound Ziziphora bungeana Capsule, and Preparation Method and Application Thereof. CN102895304 (A) Chinese Patent. 2013 Jan 30;

Ajiaikebaier A., Shi H., Abuduwufuer R. Preparation and Use of Ziziphora General Flavone. CN 101513448 A. 2009 Aug 26;

Jiang H., Yang W., Feng S., Abudushalamu M. Ziziphora clinopodioides Lam. Extract and Production Method Thereof and Application Thereof in Cardiovascular Drugs. CN101623324 (B) Chinese Patent. 2012 Feb 1;

Yang W., Hairula M., Chong L., Jiang H. Ziziphora bungeana Dripping Pills, Production Method Thereof and Application of Dripping Pills as Cardiovascular Medicament. CN102048813 (A) Chinese Patent. 2011 May 11;

Zheng S., Meng X., Zhu H., Xu M. Traditional Chinese Medicine Compound for Treating Paroxysmal Supraventricular Tachycardia. CN102861169 (A) Chinese Patent. 2013 Jan 9;

Bahaerguli A., Zhu X., Xu X., Bao E. Kazak Medicine Ziziphora clinopodioides Lam. Oral Cavity Spray. CN101485621 (A) Chinese Patent. 2009 Jul 22;

Wang Y., Ban X., He J., Huang B., Zeng H., Jun T., Chen Y. Preparation Method of Ziziphora clinopodioides Volatile Oil and Function Thereof of Preventing and Treating Sclerotinia Rot of Rape. CN102093932 (B) Chinese Patent. 2012 Nov 14;

Tian S., Zhou X., Hammulati W., Yu Q., Liu H., Ge L. Ziziphora clinopodioides Lam Fingerprint and Establishment Method Thereof. CN 102662019 (A) Chinese Patent. 2012 Sep 12;

Mehmood R., Imran M., Malik A., Tareen R.B. Ziziphorins A and B. New flavonoids from Ziziphora tenuior. Z. Naturforsch. Sect. B J. Chem. Sci. 2010;65:1397–1400. doi: 10.1515/znb-2010-1117. DOI

Senejoux F., Demougeot C., Kerram P., Aisa H.A., Berthelot A., Bévalot F., Girard-Thernier C. Bioassay-guided isolation of vasorelaxant compounds from Ziziphora clinopodioides Lam. (Lamiaceae) Fitoterapia. 2012;83:377–382. doi: 10.1016/j.fitote.2011.11.023. PubMed DOI

Ye Y., Liu B.Y., Zou G., Aisa H.A. Chemical constituents of Ziziphora clinopodioides. Chem. Nat. Compd. 2012;48:681–682. doi: 10.1007/s10600-012-0348-4. DOI

Nabavi S.M., Habtemariam S., Daglia M., Nabavi S.F. Apigenin and Breast Cancers: From Chemistry to Medicine. Anti-Cancer Agents Med. Chem. 2015;15:728–735. doi: 10.2174/1871520615666150304120643. PubMed DOI

Bao Y.Y., Zhou S.H., Fan J., Wang Q.Y. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol. 2013;9:1353–1364. doi: 10.2217/fon.13.84. PubMed DOI

Babcook M.A., Gupta S. Apigenin: a promising anticancer agent for the modulation of the insulin-like growth factor (IGF) axis in prostate cancer. Biomed. Res. 2012;23:55–68.

Shukla S., Gupta S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm. Res. 2010;27:962–978. doi: 10.1007/s11095-010-0089-7. PubMed DOI PMC

Lefort E.C., Blay J. Apigenin and its impact on gastrointestinal cancers. Mol. Nutr. Food Res. 2013;57:126–144. doi: 10.1002/mnfr.201200424. PubMed DOI

Shukla S., Gupta S. Role of apigenin in human health and disease. In: Preedy V.R., editor. Beer in Health and Disease Prevention. Academic Press; Burlington, MA, USA: 2009. pp. e202–e216.

Nabavi S.F., Braidy N., Habtemariam S., Orhan I.E., Daglia M., Manayi A., Gortzi O., Nabavi S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem. Int. 2015;90:224–231. doi: 10.1016/j.neuint.2015.09.006. PubMed DOI

Kasala E.R., Bodduluru L.N., Madana R.M., V A.K., Gogoi R., Barua C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett. 2015;233:214–225. doi: 10.1016/j.toxlet.2015.01.008. PubMed DOI

Kasala E.R., Bodduluru L.N., Barua C.C., Gogoi R. Chrysin and its emerging role in cancer drug resistance. Chem.-Biol. Interact. 2015;236:7–8. doi: 10.1016/j.cbi.2015.04.017. PubMed DOI

Liu Y., Song X., He J., Zheng X., Wu H. Synthetic derivatives of chrysin and their biological activities. Med. Chem. Res. 2014;23:555–563. doi: 10.1007/s00044-013-0711-4. DOI

Tuorkey M.J. Molecular targets of luteolin in cancer. Eur. J. Cancer Prev. 2016;25:65–76. doi: 10.1097/CEJ.0000000000000128. PubMed DOI PMC

Kapoor S. Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp. Cell Res. 2013;319:777–778. doi: 10.1016/j.yexcr.2013.01.006. PubMed DOI

Nabavi S.F., Braidy N., Gortzi O., Sobarzo-Sanchez E., Daglia M., Skalicka-Woźniak K., Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015;119 doi: 10.1016/j.brainresbull.2015.09.002. PubMed DOI

Theoharides T.C. Luteolin as a therapeutic option for multiple sclerosis. J. Neuroinflammation. 2009;6:29. doi: 10.1186/1742-2094-6-29. PubMed DOI PMC

Maruoka H., Shimoke K. Mechanisms of neurotrophic activities via low-molecular-weight compounds: Post-transcriptional regulation in PC12 cells and neurons. Clin. Pharmacol. Biopharm. 2013;S1:003. doi: 10.4172/2167-065X.S1-003. DOI

Kritas S.K., Saggini A., Varvara G., Murmura G., Caraffa A., Antinolfi P., Toniato E., Pantalone A., Neri G., Frydas S., et al. Luteolin inhibits mast cell-mediated allergic inflammation. J. Biol. Reg. Homeos. Ag. 2013;27:955–959. PubMed

Jiang D., Li D., Wu W. Inhibitory effects and mechanisms of luteolin on proliferation and migration of vascular smooth muscle cells. Nutrients. 2013;5:1648–1659. doi: 10.3390/nu5051648. PubMed DOI PMC

Xu T., Li D., Jiang D. Targeting cell signaling and apoptotic pathways by luteolin: Cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients. 2012;4:2008–2019. doi: 10.3390/nu4122008. PubMed DOI PMC

Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009;9:31–59. doi: 10.2174/138955709787001712. PubMed DOI

Seelinger G., Merfort I., Schempp C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74:1667–1677. doi: 10.1055/s-0028-1088314. PubMed DOI

Oganesvan G.B., Galstyan A.M., Mnatsakanyan V.A., Paronikyan R.V., Ter-Zakharyan Y.Z. Phenols and flavonoids of Ziziphora clinopodioides. Khimiya Prirodnykh Soedinenii. 1991;2:286–287.

Gohari A.R., Saeidnia S., Gohari M.R., Moradi-Afrapoli F., Malmir M., Hadjiakhoondi A. Bioactive flavonoids from Satureja atropatana Bonge. Nat. Prod. Res. 2009;23:1609–1614. doi: 10.1080/14786410902800707. PubMed DOI

Dugas A.J., Castaneda-Acosta J., Bonin G.C., Price K.L., Fischer N.H., Winston G.W. Evaluation of the Total Peroxyl Radical-Scavenging Capacity of Flavonoids: Structure-Activity Relationships. J. Nat. Prod. 2000;63:327–331. doi: 10.1021/np990352n. PubMed DOI

Bhat T.A., Nambiar D., Tailor D., Pal A., Agarwal R., Singh R.P. Acacetin Inhibits In Vitro and In Vivo Angiogenesis and Downregulates Stat Signaling and VEGF Expression. Cancer Prev. Res. 2013;6:1128–1139. doi: 10.1158/1940-6207.CAPR-13-0209. PubMed DOI PMC

Liu L.-Z., Jing Y., Jiang L.L., Jiang X.E., Jiang Y., Rojanasakul Y., Jiang B.H. Acacetin inhibits VEGF expression, tumor angiogenesis and growth through AKT/HIF-1α pathway. Biochem. Biophys. Res. Commun. 2011;413:299–305. doi: 10.1016/j.bbrc.2011.08.091. PubMed DOI PMC

Kim C.D., Cha J.D., Li S., Cha I.H. The mechanism of acacetin-induced apoptosis on oral squamous cell carcinoma. Arch. Oral Biol. 2015;60:1283–1298. doi: 10.1016/j.archoralbio.2015.05.009. PubMed DOI

Shim H.Y., Park J.H., Paik H.D., Nah S.Y., Kim D.S., Han Y.S. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol. Cells. 2007;24:95–104. PubMed

Singh R.P., Agrawal P., Yim D., Agarwal C., Agarwal R. Acacetin inhibits cell growth and cell cycle progression, and induces apoptosis in human prostate cancer cells: Structure-activity relationship with linarin and linarin acetate. Carcinogenesis. 2005;26:845–854. doi: 10.1093/carcin/bgi014. PubMed DOI

Pan M.H., Lai C.S., Hsu P.C., Wang Y.J. Acacetin Induces Apoptosis in Human Gastric Carcinoma Cells Accompanied by Activation of Caspase Cascades and Production of Reactive Oxygen Species. J. Agric. Food Chem. 2005;53:620–630. doi: 10.1021/jf048430m. PubMed DOI

Hsu Y.L., Kuo P.L., Liu C.F., Lin C.C. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett. 2004;212:53–60. doi: 10.1016/j.canlet.2004.02.019. PubMed DOI

Warat M., Szliszka E., Korzonek-Szlacheta I., Król W., Czuba Z.P. Chrysin, apigenin and acacetin inhibit Tumor Necrosis Factor-related apoptosis-inducing ligand receptor-1 (TRAIL-R1) on activated RAW264.7 macrophages. Int. J. Mol. Sci. 2014;15:11510–11522. doi: 10.3390/ijms150711510. PubMed DOI PMC

Kim H.R., Park C.G., Jung J.Y. Acacetin (5,7-dihydroxy-4´-methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells. Int. J. Mol. Med. 2014;33:317–324. PubMed

Jung S.K., Kim J.E., Lee S.Y., Lee M.H., Byun S., Kim Y.A., Lim T.G., Reddy K., Huang Z., Bode A.M., et al. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis. 2014;35:123–130. doi: 10.1093/carcin/bgt266. PubMed DOI PMC

Horibe I., Satoh Y., Shiota Y., Kumagai A., Horike N., Takemori H., Uesato S., Sugie S., Obata K., Kawahara H., et al. Induction of melanogenesis by 4´-O-methylated flavonoids in B16F10 melanoma cells. J. Nat. Med. 2013;67:705–710. doi: 10.1007/s11418-012-0727-y. PubMed DOI

Ninomiya M., Nishida K., Tanaka K., Watanabe K., Koketsu M. Structure-activity relationship studies of 5,7‑dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL-60 cells. J. Nat. Med. 2013;67:460–467. doi: 10.1007/s11418-012-0697-0. PubMed DOI

Boussouar A., Barette C., Nadon R., Saint-Léger A., Broucqsault N., Ottaviani A., Firozhoussen A., Lu Y., Lafanechère L., Gilson E., et al. Acacetin and chrysin, two polyphenolic compounds, alleviate telomeric position effect in human cells. Mol. Ther. Nucleic Acids. 2013;2:e116. doi: 10.1038/mtna.2013.42. PubMed DOI PMC

Fong Y., Shen K.H., Chiang T.A., Shih Y.W. Acacetin inhibits TPA-induced MMP-2 and u-PA expressions of human lung cancer cells through inactivating JNK signaling pathway and reducing binding activities of NF-κB and AP-1. J. Food Sci. 2010;75:30–38. doi: 10.1111/j.1750-3841.2009.01438.x. PubMed DOI

Shen K.H., Hung S.H., Yin L.T., Huang C.S., Chao C.H., Liu C.L., Shih Y.W. Acacetin, a flavonoid, inhibits the invasion and migration of human prostate cancer DU145 cells via inactivation of the p38 MAPK signaling pathway. Mol. Cell. Biochem. 2010;333:279–291. doi: 10.1007/s11010-009-0229-8. PubMed DOI

Patel K., Gadewar M., Tahilyani V., Patel D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med. 2013;19:792–800. doi: 10.1007/s11655-013-1595-3. PubMed DOI

Tian S., Yu Q., Wang D., Upur H. Development of a rapid resolution liquid chromatography-diode array detector method for the determination of three compounds in Ziziphora clinopodioides Lam from different origins of Xinjiang. Pharmacog. Mag. 2012;8:280–284. PubMed PMC

Abdurrazak M., Rao M.U.S., Ado A.B., Mohd K.S., Thant Z. Some natural products and their secondary metabolites attributed towards diabetic cure: a review. Int. J. Pharm. Pharm. Sci. 2015;7:22–28.

Bogucka-Kocka A., Wozniak M., Feldo M., Kockic J., Szewczyk K. Diosmin—Isolation techniques, determination in plant material and pharmaceutical formulations, and clinical use. Nat. Prod. Commun. 2013;8:545–550. PubMed

Yoon Y.P., Lee H.J., Kim Y.H., Luyen B.T.T., Hong J.H., Lee C.J. Effects of cynaroside, cynarin and linarin on secretion, production and gene expression of airway MUC5AC mucin in NCI-H292 cells. Nat. Prod. Sci. 2015;21:59–65.

Kim S.J., Cho H.I., Kim S.J., Park J.H., Kim J.S., Kim Y.H., Lee S.K., Kwak J.H., Lee S.M. Protective effect of linarin against d-galactosamine and lipopolysaccharide-induced fulminant hepatic failure. Eur. J. Pharmacol. 2014;738:66–73. doi: 10.1016/j.ejphar.2014.05.024. PubMed DOI

Sivashanmugam M., Raghunath C., Vetrivel U. Virtual screening studies reveal linarin as a potential natural inhibitor targeting CDK4 in retinoblastoma. J. Pharmacol. Pharmacother. 2013;4:256–264. PubMed PMC

Lou H., Fan P., Perez R.G., Lou H. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg. Med. Chem. 2011;19:4021–4027. doi: 10.1016/j.bmc.2011.05.021. PubMed DOI

Fan P., Hay A.E., Marston A., Hostettmann K. Acetylcholinesterase-Inhibitory Activity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddleja nitida. Pharm. Biol. 2008;46:596–601. doi: 10.1080/13880200802179592. DOI

Han S., Sung K.H., Yim D., Lee S., Lee C.K., Ha N.J., Kim K. The effect of linarin on LPS-induced cytokine production and nitric oxide inhibition in murine macrophages cell line RAW264.7. Arch. Pharmacal. Res. 2002;25:170–177. doi: 10.1007/BF02976559. PubMed DOI

Wu J., Feng J.Q., Zhao W.M. A new lignan and anti-inflammatory flavonoids from Kerria japonica. J. Asian Nat. Prod. Res. 2008;10:435–438. doi: 10.1080/10286020801892375. PubMed DOI

Fernandez S.P., Wasowski C., Loscalzo L.M., Granger R.E., Johnston G.A., Paladini A.C., Marder M. Central nervous system depressant action of flavonoid glycosides. Eur. J. Pharmacol. 2006;539:168–176. doi: 10.1016/j.ejphar.2006.04.004. PubMed DOI

Fernandez S., Wasowski C., Paladini A., Marder M. Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis. Pharmacol. Biochem. Behav. 2004;77:399–404. doi: 10.1016/j.pbb.2003.12.003. PubMed DOI

Yu J., Weiwer M., Linhardt R.J., Dordick J.S. The role of the methoxyphenol apocynin, a vascular NADPH oxidase inhibitor, as a chemopreventative agent in the potential treatment of cardiovascular diseases. Curr. Vasc. Pharmacol. 2008;6:204–217. doi: 10.2174/157016108784911984. PubMed DOI

‘t Hart B.A., Copray S., Philippens I. Apocynin, a low molecular oral treatment for neurodegenerative disease. BioMed. Res. Int. 2014:298020. doi: 10.1155/2014/298020. PubMed DOI PMC

Pakniyat E., Mousavi M. Improvement of GC-MS Analysis of Shahrbabak Ziziphora tenuior Essential Oil by Using Multivariate Curve Resolution Approaches. J. Chin. Chem. Soc. 2014;61:649–658. doi: 10.1002/jccs.201300133. DOI

Zhu T.H., Yu Y.Y., Cao S.W. Tyrosinase inhibitory effects and antioxidant properties of paeonol and its analogues. Food Sci. Technol. Res. 2013;19:609–615. doi: 10.3136/fstr.19.609. DOI

Kim M.G., Yang J.Y., Lee H.S. Acaricidal Potentials of Active Properties Isolated from Cynanchum paniculatum and Acaricidal Changes by Introducing Functional Radicals. J. Agric. Food Chem. 2013;61:7568–7573. doi: 10.1021/jf402330p. PubMed DOI

Benalla W., Bellahcen S., Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr. Diabetes Rev. 2010;6:247–254. doi: 10.2174/157339910791658826. PubMed DOI

Su P., Shi Y., Wang J., Shen X., Zhang J. Anticancer Agents Derived from Natural Cinnamic Acids. Anti-Cancer Agents Med. Chem. 2015;15:980–987. doi: 10.2174/1871520615666150130111120. PubMed DOI

Fuentes E., Palomo I. Mechanisms of endothelial cell protection by hydroxycinnamic acids. Vasc. Pharmacol. 2014;63:155–161. doi: 10.1016/j.vph.2014.10.006. PubMed DOI

Magnani C., Isaac V.L.B., Correa M.A., Salgado H. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Meth. 2014;6:3203–3210. doi: 10.1039/c3ay41807c. DOI

Bhullar K.S., Lassalle-Claux G., Touaibia M., Rupasinghe H.P. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. Eur. J. Pharmacol. 2014;730:125–132. doi: 10.1016/j.ejphar.2014.02.038. PubMed DOI

Li Q.L., Li B.G., Zhang Y., Gao X.P., Li C.Q., Zhang G.L. Three angiotensin-converting enzyme inhibitors from Rabdosia coetsa. Phytomedicine. 2008;15:386–388. doi: 10.1016/j.phymed.2007.09.013. PubMed DOI

Silva T., Borges F., Edraki N., Alizadeh M., Miri R., Saso L., Firuzi O. Hydroxycinnamic acid as a novel scaffold for the development of cyclooxygenase-2 inhibitors. RSC Adv. 2015;5:58902–58911. doi: 10.1039/C5RA08692B. DOI

Chiang Y.M., Lo C.P., Chen Y.P., Wang S.Y., Yang N.S., Kuo Y.H., Shyur L.F. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br. J. Pharmacol. 2005;146:352–363. doi: 10.1038/sj.bjp.0706343. PubMed DOI PMC

da Cunha F.M., Duma D., Assreuy J., Buzzi F.C., Niero R., Campos M.M., Calixto J.B. Caffeic Acid Derivatives: In Vitro and In Vivo Anti-inflammatory Properties. Free Radic. Res. 2004;38:1241–1253. doi: 10.1080/10715760400016139. PubMed DOI

Williams L.K., Li C., Withers S.G., Brayer G.D. Order and Disorder: Differential Structural Impacts of Myricetin and Ethyl Caffeate on Human Amylase, an Antidiabetic Target. J. Med. Chem. 2012;55:10177–10186. doi: 10.1021/jm301273u. PubMed DOI

Yokoyama T., Kosaka Y., Mizuguchi M. Inhibitory Activities of Propolis and Its Promising Component, Caffeic Acid Phenethyl Ester, against Amyloidogenesis of Human Transthyretin. J. Med. Chem. 2014;57:8928–8935. doi: 10.1021/jm500997m. PubMed DOI

Wang J., Gu S.S., Pang N., Wang F.Q., Pang F., Cui H.S., Wu X.Y., Wu F.A. Alkyl caffeates improve the antioxidant activity, antitumor property and oxidation stability of edible oil. PLoS ONE. 2014;9:e95909. doi: 10.1371/journal.pone.0095909. PubMed DOI PMC

Hradkova I., Merkl R., Smidrkal J., Kyselka J., Filip V. Antioxidant effect of mono- and dihydroxyphenols in sunflower oil with different levels of naturally present tocopherols. Eur. J. Lipid Sci. Technol. 2013;115:747–755. doi: 10.1002/ejlt.201200293. PubMed DOI PMC

Garrido J., Gaspar A., Garrido E., Miri R., Tavakkoli M., Pourali S., Saso L., Borges F., Firuzi O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie. 2012;94:961–967. doi: 10.1016/j.biochi.2011.12.015. PubMed DOI

Frega N.G., Boselli E., Bendia E., Minardi M., Benedetti A. Ethyl caffeoate: Liquid chromatography-tandem mass spectrometric analysis in Verdicchio wine and effects on hepatic stellate cells and intracellular peroxidation. Anal. Chim. Acta. 2006;563:375–381. doi: 10.1016/j.aca.2005.09.017. DOI

Lee H.N., Kim J.K., Kim J.H., Lee S.J., Ahn E.K., Oh J.S., Seo D.W. A mechanistic study on the anti-cancer activity of ethyl caffeate in human ovarian cancer SKOV-3 cells. Chem.-Biol. Interact. 2014;219:151–158. doi: 10.1016/j.cbi.2014.05.017. PubMed DOI

Amoah S.K., Sandjo L.P., Kratz J.M., Biavatti M.W. Rosmarinic Acid—Pharmaceutical and Clinical Aspects. Planta Med. 2016;82:388–406. doi: 10.1055/s-0035-1568274. PubMed DOI

Nabavi S.F., Tenore G.C., Daglia M., Tundis R., Loizzo M.R., Nabavi S.M. The Cellular Protective Effects of Rosmarinic Acid: From Bench to Bedside. Curr. Neurovasc. Res. 2015;12:98–105. doi: 10.2174/1567202612666150109113638. PubMed DOI

Kim G.D., Park Y.S., Jin Y.H., Park C.S. Production and applications of rosmarinic acid and structurally related compounds. Appl. Microbiol. Biotechnol. 2015;99:2083–2092. doi: 10.1007/s00253-015-6395-6. PubMed DOI

Hossan M.S., Rahman S., Bashar A.B.M.A., Rahmatullah M. Rosmarinic acid: A review of its anticancer action. World J. Pharm. Pharm. Sci. 2014;3:57–70.

Juurlink B.H.J., Azouz H.J., Aldalati A.M.Z., AlTinawi B.M., Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014;13:63. doi: 10.1186/1475-2891-13-63. PubMed DOI PMC

Mahdi J., Al-Musayeib N., Mahdi E., Pepper C. Pharmacological Importance of Simple Phenolic Compounds on Inflammation, Cell Proliferation and Apoptosis with a Special Reference to β-d-Salicin and Hydroxybenzoic Acid. Eur. J. Inflamm. 2013;11:327–336.

Opgrande J.L., Brown E.E., Hesser M., Andrews J. Benzoic acid. In: Seidel A., editor. Kirk-Othmer Encyclopedia of Chemical Technology. 5th ed. Volume 3. John Wiley & Sons; Hoboken, New Jersey, NJ, USA: 2004. pp. 625–637.

Ina H., Yamada K., Matsumoto K., Miyazaki T. Effects of benzyl glucoside and chlorogenic acid from Prunus mume on angiotensin converting enzyme, aldosterone and corticosterone levels in rat plasma. Nat. Med. 2003;57:178–180.

Luyen B.T.T., Tai B.H., Thao N.P., Cha J.Y., Lee H.Y., Lee Y.M., Kim Y.H. Anti-inflammatory components of Chrysanthemum indicum flowers. Bioorg. Med. Chem. Lett. 2015;25:266–269. doi: 10.1016/j.bmcl.2014.11.054. PubMed DOI

Mook-Jung I., Kim H.F., Wenzhe T., Tezuka Y., Kadota S., Nishijo H., Jung M.W. Neuroprotective effects of constituents of the oriental crude drugs, Rhodiola sacra, R. sachalinensis and Tokaku-joki-to, against β-amyloid toxicity, oxidative stress and apoptosis. Biol. Pharm. Bull. 2002;25:1101–1104. doi: 10.1248/bpb.25.1101. PubMed DOI

Fukuda T., Ito H., Mukainaka T., Tokuda H., Nishino H., Yoshida T. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol. Pharm. Bull. 2003;26:271–273. doi: 10.1248/bpb.26.271. PubMed DOI

Wang W., Chen W., Yang Y., Liu T., Yang H., Xin Z. New Phenolic Compounds from Coreopsis tinctoria Nutt. and Their Antioxidant and Angiotensin I-Converting Enzyme Inhibitory Activities. J. Agric. Food Chem. 2015;63:200–207. doi: 10.1021/jf504289g. PubMed DOI

Nguyen V.T., Nguyen P.T., Dat L.D., Huong P.T., Lee S.H., Jang H.D., Cuong N.X., Nam N.H., Kiem P.V., Minh C.V., et al. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant Nepenthes mirabilis. Arch. Pharmacal. Res. 2015;38:1774–1782. PubMed

Du S.S., Yang K., Wang C.F., You C.X., Geng Z.F., Guo S.S., Deng Z.W., Liu Z.L. Chemical Constituents and Activities of the Essential Oil from Myristica fragrans against Cigarette Beetle Lasioderma serricorne. Chem. Biodivers. 2014;11:1449–1456. doi: 10.1002/cbdv.201400137. PubMed DOI

Do Nascimento A.F., da Camara C.A., de Moraes M.M., Ramos C. Essential oil composition and acaricidal activity of Schinus terebinthifolius from Atlantic forest of Pernambuco, Brazil against Tetranychus urticae. Nat. Prod. Commun. 2012;7:129–132. PubMed

Duman A.D., Telci I., Dayisoylu K.S., Digrak M., Demirtas I., Alma M.H. Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilicum and Coriandrum sativum varieties. Nat. Prod. Commun. 2010;5:969–974. PubMed

Marongiu B., Piras A., Porcedda S., Tuveri E., Sanjust E., Meli M., Sollai F., Zucca P., Rescigno A. Supercritical CO2 Extract of Cinnamomum zeylanicum: Chemical Characterization and Antityrosinase Activity. J. Agric. Food Chem. 2007;55:10022–10027. doi: 10.1021/jf071938f. PubMed DOI

Bahramsoltani R., Farzaei M.H., Farahani M.S., Rahimi R. Phytochemical constituents as future antidepressants: A comprehensive review. Rev. Neurosci. 2015;26:699–719. doi: 10.1515/revneuro-2015-0009. PubMed DOI

Freires I.A., Denny C., Benso B., de Alencar S.M., Rosalen P.L. Antibacterial activity of essential oils and their isolated constituents against cariogenic bacteria: A systematic review. Molecules. 2015;20:7329–7358. doi: 10.3390/molecules20047329. PubMed DOI PMC

Langeveld W.T., Veldhuizen E.J.A., Burt S.A. Synergy between essential oil components and antibiotics: A review. Cr. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI

Srinivasan K. Antioxidant Potential of Spices and Their Active Constituents. Cr. Rev. Food Sci. Nutr. 2014;54:352–372. doi: 10.1080/10408398.2011.585525. PubMed DOI

Kamatou G.P., Vermaak I., Viljoen A.M. Eugenol—From the remote Maluku islands to the international market place: A review of a remarkable and versatile molecule. Molecules. 2012;17:6953–6981. doi: 10.3390/molecules17066953. PubMed DOI PMC

Senejoux F., Girard C., Kerram P., Aisa H.A., Berthelot A., Bévalot F., Demougeot C. Mechanisms of vasorelaxation induced by Ziziphora clinopodioides Lam. (Lamiaceae) extract in rat thoracic aorta. J. Ethnopharmacol. 2010;132:268–273. doi: 10.1016/j.jep.2010.08.028. PubMed DOI

Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Hosek J., Smejkal K. Flavonoids as anti-inflammatory agents. In: Parnham M.J., editor. Encyclopedia of Inflammatory Diseases. Birkhauser Verlag AG; Basel, Switzerland: 2016. In press.

Pan M.H., Lai C.S., Ho C.T. Anti-inflammatory activity of dietary flavonoids. Food Funct. 2010;1:15–31. doi: 10.1039/c0fo00103a. PubMed DOI

Lozano-Mena G., Sanchez-Gonzalez M., Juan M.E., Planas J.M. Maslinic acid, a natural phytoalexin-type triterpene from olives—A promising nutraceutical? Molecules. 2014;19:11538–11559. doi: 10.3390/molecules190811538. PubMed DOI PMC

Rodriguez-Rodriguez R. Oleanolic Acid and Related Triterpenoids from Olives on Vascular Function: Molecular Mechanisms and Therapeutic Perspectives. Curr. Med. Chem. 2015;22:1414–1425. doi: 10.2174/0929867322666141212122921. PubMed DOI

Paszel-Jaworska A., Romaniuk A., Rybczynska M. Molecular Mechanisms of Biological Activity of Oleanolic Acid—A Source of Inspiration for A New Drugs Design. Mini-Rev. Org. Chem. 2014;11:330–342. doi: 10.2174/1570193X1103140915111839. DOI

Kashyap D., Tuli H.S., Sharma A.K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 2016;146:201–213. doi: 10.1016/j.lfs.2016.01.017. PubMed DOI

Tian S., Shi Y., Yu Q., Upur H. Determination of oleanolic acid and ursolic acid contents in Ziziphora clinopodioides Lam. by HPLC method. Pharmacog. Mag. 2010;6:116–119. doi: 10.4103/0973-1296.62898. PubMed DOI PMC

Sánchez-Quesada C., López-Biedma A., Warleta F., Campos M., Beltrán G., Gaforio J.J. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea. J. Agric. Food Chem. 2013;61:12173–12182. doi: 10.1021/jf403154e. PubMed DOI

Khiev P., Cai X.F., Chin Y.W., Ahn K.S., Lee H.K., Oh S.R. Cytotoxic terpenoids from the methanolic extract of Bridelia cambodiana. J. Korean Soc. Appl. Biol. Chem. 2009;52:626–631. doi: 10.3839/jksabc.2009.104. DOI

Babalola I.T., Shode F.O. Ubiquitous ursolic acid: A potential pentacyclic triterpene natural product. J. Pharmacogn. Phytochem. 2013;2:214–222.

Chen H., Gao Y., Wang A., Zhou X., Zheng Y., Zhou J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem. 2015;92:648–655. doi: 10.1016/j.ejmech.2015.01.031. PubMed DOI PMC

Shanmugam M.K., Dai X., Kumar A.P., Tan B.K., Sethi G., Bishayee A. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochem. Pharmacol. 2013;85:1579–1587. doi: 10.1016/j.bcp.2013.03.006. PubMed DOI

Wei H.Y., Yang M.L. Mechanistic Perspectives of Maslinic Acid in Targeting Inflammation. Biochem. Res. Int. 2015:279356. doi: 10.1155/2015/279356. PubMed DOI PMC

Lee J.H., Lee J.Y., Park J.H., Jung H.S., Kim J.S., Kang S.S., Kim Y.S., Han Y. Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine. 2007;25:3834–3840. doi: 10.1016/j.vaccine.2007.01.108. PubMed DOI

Chen L.S., Zheng D.S. Bioactive constituents from the rhizomes of Aster tataricus L. f. afford the treatment of asthma through activation of β2AR and inhibition of NF-κB. Lat. Am. J. Pharm. 2015;34:291–295.

Huang L.J., Gao W.Y., Li X., Zhao W.S., Huang L.Q., Liu C.X. Evaluation of the In Vivo Anti-inflammatory Effects of Extracts from Pyrus bretschneideri Rehd. J. Agric. Food Chem. 2010;58:8983–8987. doi: 10.1021/jf101390q. PubMed DOI

Mavar-Manga H., Haddad M., Pieters L., Baccelli C., Penge A., Quetin-Leclercq J. Anti-inflammatory compounds from leaves and root bark of Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg. J. Ethnopharmacol. 2008;115:25–29. PubMed

Kim J.S., Kim J.C., Shim S.H., Lee E.J., Jin W., Bae K., Son K.H., Kim H.P., Kang S.S., Chang H.W. Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch. Pharmacal. Res. 2006;29:617–623. doi: 10.1007/BF02968244. PubMed DOI

Luo W., Zhao M., Yang B., Shen G., Rao G. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities. Food Chem. 2009;114:499–504. doi: 10.1016/j.foodchem.2008.09.077. DOI

Guo X.D., Wang M., Gao J.M., Shi X.W. Bioguided fraction of antioxidant activity of ethanol extract from tartary buckwheat bran. Cereal Chem. 2012;89:311–315. doi: 10.1094/CCHEM-06-12-0069-R. DOI

Qing Z.J., Wang Y., Hui L.Y., Yong L.W., Long L.H., Ao D.J., Xia P.L. Two new natural products from the fruits of Alpinia oxyphylla with inhibitory effects on nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophage cells. Arch. Pharmacal. Res. 2012;35:2143–2146. doi: 10.1007/s12272-012-1211-7. PubMed DOI

Kamurthy H., Sumalatha C., Rao N., Sudhakar M. Antinocieptive activity of stigmosterol-3-glyceryl-2′-linoleiate, campesterol and daucosterol isolated from Aerva lanata Linn. aerial parts. Asian J. Pharm. Clin. Res. 2013;6:149–152.

Han X.N., Liu C.Y., Liu Y.L., Xu Q.M., Li X.R., Yang S.L. New Triterpenoids and Other Constituents from the Fruits of Benincasa hispida (Thunb.) Cogn. J. Agric. Food Chem. 2013;61:12692–12699. doi: 10.1021/jf405384r. PubMed DOI

Chung M.J., Lee S., Park Y.I., Lee J., Kwon K.H. Neuroprotective effects of phytosterols and flavonoids from Cirsium setidens and Aster scaber in human brain neuroblastoma SK-N-SH cells. Life Sci. 2016;148:173–182. doi: 10.1016/j.lfs.2016.02.035. PubMed DOI

Jiang L.H., Yuan X.L., Yang N.Y., Ren L., Zhao F.M., Luo B.X., Bian Y.Y., Xu J.Y., Lu D.X., Zheng Y.Y., et al. Daucosterol protects neurons against oxygen-glucose deprivation/reperfusion-mediated injury by activating IGF1 signaling pathway. J. Steroid Biochem. Mol. Biol. 2015;152:45–52. doi: 10.1016/j.jsbmb.2015.04.007. PubMed DOI

Jiang L.H., Yang N.Y., Yuan X.L., Zou Y.J., Zhao F.M., Chen J.P., Wang M.Y., Lu D.X. Daucosterol promotes the proliferation of neural stem cells. J. Steroid Biochem. Mol. Biol. 2014;140:90–99. doi: 10.1016/j.jsbmb.2013.12.002. PubMed DOI

Bahadori M.B., Dinparast L., Valizadeh H., Farimani M.M., Ebrahimi S.N. Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot. 2016;106:1–4. doi: 10.1016/j.sajb.2015.12.003. DOI

Zhao C., She T., Wang L., Su Y., Qu L., Gao Y., Xu S., Cai S., Shou C. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life Sci. 2015;137:37–43. doi: 10.1016/j.lfs.2015.07.019. PubMed DOI

Esmaeili M.A., Farimani M.M. Inactivation of PI3K/Akt pathway and upregulation of PTEN gene are involved in daucosterol, isolated from Salvia sahendica, induced apoptosis in human breast adenocarcinoma cells. S. Afr. J. Bot. 2014;93:37–47. doi: 10.1016/j.sajb.2014.03.010. DOI

Manayi A., Saeidnia S., Ostad S.N., Hadjiakhoondi A., Ardekani M.R., Vazirian M., Akhtar Y., Khanavi M. Chemical constituents and cytotoxic effect of the main compounds of Lythrum salicaria L. Z. Naturforsch. C J. Biosci. 2013;68:367–375. doi: 10.5560/ZNC.2013.68c0367. PubMed DOI

Salimi M., Ardestaniyan M.H., Mostafapour K.H., Saeidnia S., Gohari A.R., Amanzadeh A., Sanati H., Sepahdar Z., Ghorbani S., Salimi M. Anti-proliferative and apoptotic activities of constituents of chloroform extract of Juglans regia leaves. Cell. Prolif. 2014;47:172–179. doi: 10.1111/cpr.12090. PubMed DOI PMC

Zeng X., Li C.Y., Wang H., Qiu Q., Qiu G., He X. Unusual lipids and acylglucosylsterols from the roots of Livistona chinensis. Phytochem. Lett. 2013;6:36–40. doi: 10.1016/j.phytol.2012.10.010. DOI

Lee D.Y., Lee S.J., Kwak H.Y., Jung L., Heo J., Hong S., Kim G.W., Baek N.I. Sterols isolated from Nuruk (Rhizopus oryzae KSD-815) inhibit the migration of cancer cells. J. Microbiol. Biotechnol. 2009;19:1328–1332. doi: 10.4014/jmb.0902.072. PubMed DOI

Gao D., Zhang Y.L., Xu P., Lin Y.X., Yang F.Q., Liu J.H., Zhu H.W., Xia Z.N. In vitro evaluation of dual agonists for PPARγ/β from the flower of Edgeworthia gardneri (wall.) Meisn. J. Ethnopharmacol. 2015;162:14–19. doi: 10.1016/j.jep.2014.12.034. PubMed DOI

Sheng Z., Dai H., Pan S., Wang H., Hu Y., Ma W. Isolation and characterization of an α-glucosidase inhibitor from Musa spp. (Baxijiao) flowers. Molecules. 2014;19:10563–10573. doi: 10.3390/molecules190710563. PubMed DOI PMC

Chen W.H., Liu W.J., Wang Y., Song X.P., Chen G.Y. A new naphthoquinone and other antibacterial constituents from the roots of Xanthium sibiricum. Nat. Prod. Res. 2015;29:739–744. doi: 10.1080/14786419.2014.985678. PubMed DOI

Lee D.G., Lee A.Y., Kim S.J., Lee S. Antibacterial phytosterols and alkaloids from Lycoris radiata. Nat. Prod. Sci. 2014;20:107–112.

Cho E.J., Choi J.Y., Lee K.H., Lee S. Isolation of antibacterial compounds from Parasenecio pseudotaimingasa. Hort. Environ. Biotechnol. 2012;53:561–564. doi: 10.1007/s13580-012-0040-4. DOI

Sultana N., Afolayan A.J. A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides. Nat. Prod. Res. 2007;21:889–896. doi: 10.1080/14786410601129606. PubMed DOI

Kimura T., Jyo M., Nakamura N., Komatsu K., Hattori M., Shimotohno K., Shimotohno K., Kakiuchi N. Inhibitory effect of Tibetan medicinal plants on viral polymerases. J. Trad. Med. 2003;20:243–250.

Jeong J.S., Lee J.-H., Lee S.H., Jeong C.S. Suppressive actions of Astragali Radix (AR) ethanol extract and isolated astragaloside I on HCl/ethanol-induced gastric lesions. Biomol. Ther. 2009;17:62–69. doi: 10.4062/biomolther.2009.17.1.62. DOI

Yan X.T., Lee S.-H., Li W., Jang H.D., Kim Y.H. Terpenes and sterols from the fruits of Prunus mume and their inhibitory effects on osteoclast differentiation by suppressing tartrate-resistant acid phosphatase activity. Arch. Pharmacal. Res. 2015;38:186–192. doi: 10.1007/s12272-014-0389-2. PubMed DOI

Darbandi T., Honarvar B., Sinaei Nobandegani M., Rezaei A. Extraction of Ziziphora tenuior essential oil using supercritical CO2. Eur. J. Exp. Biol. 2013;3:687–695.

Barra A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009;4:1147–1154. PubMed

Figueiredo C.A., Barroso J.G., Pedro L.G., Scheffer J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Frag. J. 2008;23:213–226. doi: 10.1002/ffj.1875. DOI

Amiri H. Influence of growth phase on the essential oil composition of Ziziphora clinopodioides Lam. Nat. Prod. Res. 2009;23:601–606. doi: 10.1080/14786410802113995. PubMed DOI

Goldansaz S.M., Rezaee M.B., Jaimand K., Mirhoseini A. Study of essential oils compositions of three species of medicinal plants from ShirKooh mountain (Up village) on Yazd province. J. Med. Plants By-Prod. 2014;3:187–191.

Aghajani Z., Assadian F., Masoudi S., Chalabian F., Esmaeili A., Tabatabaei-Anaraki M., Rustaiyan A. Chemical composition and In Vitro Antibacterial Activities of The Oil Ziziphora clinopodioides and Z. capitata subsp. capitata from Iran. Chem. Nat. Compd. 2008;44:387–389. doi: 10.1007/s10600-008-9073-4. DOI

Kasumov F.Y., Kyazimov I.M., Dembitskii A.D., Ismailov N.M. Component composition of the essential oils of Ziziphora species. Chem. Nat. Compd. 1988;23:636–637. doi: 10.1007/BF00598699. DOI

Dembitskii A.D., Bergaliev E.S., Kyazimov M.I. Chemical composition of the essential oils of Ziziphora growing under various ecological conditions. Chem. Nat. Compd. 1994;30:673–675. doi: 10.1007/BF00630600. DOI

Nagawa C.B., Boehmdorfer S., Rosenau T. Chemical composition of volatiles extracted from indigenous tree species of Uganda: composition of bark extracts from Psorospermum febrifugum and Milicia excelsa. Holzforschung. 2015;69:815–821. doi: 10.1515/hf-2014-0283. DOI

Singh H.P., Kaur S., Mittal S., Batish D.R., Kohli R.K. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem. Toxicol. 2010;48:1040–1044. doi: 10.1016/j.fct.2010.01.017. PubMed DOI

Fogang H.P.D., Tapondjou L.A., Womeni H.M., Quassinti L., Bramucci M., Vitali L.A., Petrelli D., Lupidi G., Maggi F., Papa F., et al. Characterization and biological activity of essential oils from fruits of Zanthoxylum xanthoxyloides Lam. and Z. leprieurii Guill. & Perr., two culinary plants from Cameroon. Flavour Fragr. J. 2012;27:171–179.

Abdelgaleil S.A.M., Mohamed M.I.E., Badawy M.E.I., El-arami S.A. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their Inhibitory Effects on Acetylcholinesterase Activity. J. Chem. Ecol. 2009;35:518–525. doi: 10.1007/s10886-009-9635-3. PubMed DOI

Liu Z.L., Du S.S. Fumigant components from the essential oil of Evodia rutaecarpa Hort unripe fruits. Eur. J. Chem. 2011;8:1937–1943.

do Vale T.G., Furtado E.C., Santos J.G., Jr., Viana G.S.B. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) N.E. Brown. Phytomedicine. 2002;9:709–714. doi: 10.1078/094471102321621304. PubMed DOI

Souza M.C., Siani A.C., Ramos M.F.S., Menezes-de-Lima O.J., Henriques M.G. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie. 2003;58:582–586. PubMed

Mitic-Culafic D., Zegura B., Nikolic B., Vukovic-Gacic B., Knezevic-Vukcevic J., Filipic M. Protective effect of linalool, myrcene and eucalyptol against t-butyl hydroperoxide induced genotoxicity in bacteria and cultured human cells. Food Chem. Toxicol. 2009;47:260–266. doi: 10.1016/j.fct.2008.11.015. PubMed DOI

Ciftci O., Tanyildizi S., Godekmerdan A. Curcumin, myrcen and cineol modulate the percentage of lymphocyte subsets altered by 2,3,7,8-tetrachlorodibenzo-p-dioxins (TCDD) in rats. Hum. Exp. Toxicol. 2011;30:1986–1994. doi: 10.1177/0960327111404909. PubMed DOI

Ciftci O., Ozdemir I., Tanyildizi S., Yildiz S., Oguzturk H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin induced oxidative stress in rats liver. Toxicol. Ind. Health. 2011;27:447–453. doi: 10.1177/0748233710388452. PubMed DOI

Ciftci O., Oztanir M.N., Cetin A. Neuroprotective Effects of β-Myrcene Following Global Cerebral Ischemia/Reperfusion-Mediated Oxidative and Neuronal Damage in a C57BL/J6 Mouse. Neurochem. Res. 2014;39:1717–1723. doi: 10.1007/s11064-014-1365-4. PubMed DOI

Bonamin F., Moraes T.M., dos Santos R.C., Kushima H., Faria F.M., Silva M.A., Junior I.V., Nogueira L., Bauab T.M., Souza Brito A.R.M., et al. The effect of a minor constituent of essential oil from Citrus aurantium: The role of β-myrcene in preventing peptic ulcer disease. Chem.-Biol. Interact. 2014;212:11–19. doi: 10.1016/j.cbi.2014.01.009. PubMed DOI

Guimarães A.G., Quintans J.S., Quintans-Júnior L.J. Monoterpenes with analgesic activity—A systematic review. Phytother. Res. 2013;27:1–15. doi: 10.1002/ptr.4686. PubMed DOI

Jaeger W. Metabolism of terpenoids in animal models and humans. In: Baser K.H.C., Buchbauer G., editors. Handbook of Essential Oils. CRC Press; Boca Raton, FL, USA: 2010.

Sonboli A., Mirjalili M.H., Hadian J., Ebrahimi S.N., Yousefzadi M. Antibacterial Activity and Composition of the Essential Oil of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. from Iran. Z. Naturforsch. C. 2006;61:677–680. doi: 10.1515/znc-2006-9-1011. PubMed DOI

Karimi I., Hayatgheybi H., Motamedi S., Naseri D., Shamspur T., Afzali D., Aghdam A.H. Chemical Composition and Hypolipidemic Effects of an Aromatic Water of Ziziphora tenuior L. in Cholesterol-fed Rabbits. J. Appl. Biol. Sci. 2013;7:61–67.

Valente J., Zuzarte M., Goncalves M.J., Lopes M.C., Cavaleiro C., Salgueiro L., Cruz M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol. 2013;62:349–354. doi: 10.1016/j.fct.2013.08.083. PubMed DOI

Cavaleiro C., Salgueiro L., Goncalves M.J., Hrimpeng K., Pinto J., Pinto E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med. 2015;69:241–248. doi: 10.1007/s11418-014-0884-2. PubMed DOI

Perumalsamy H., Kim N.J., Ahn Y.J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae) J. Med. Entomol. 2009;46:1420–1423. doi: 10.1603/033.046.0624. PubMed DOI

Cheng S.S., Huang C.G., Chen Y.J., Yu J.J., Chen W.J., Chang S.T. Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour. Technol. 2009;100:452–456. doi: 10.1016/j.biortech.2008.02.038. PubMed DOI

Lima D.F., Brandao M.S., Moura J.B., Leitão J.M., Carvalho F.A., Miúra L.M., Leite J.R., Sousa D.P., Almeida F.R. Antinociceptive activity of the monoterpene α-phellandrene in rodents: Possible mechanisms of action. J. Pharm. Pharmacol. 2012;64:283–292. doi: 10.1111/j.2042-7158.2011.01401.x. PubMed DOI

Piccinelli A.C., Santos J.A., Konkiewitz E.C., Oesterreich S.A., Formagio A.S., Croda J., Ziff E.B., Kassuya C.A. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model. Nutr. Neurosci. 2015;18:217–224. doi: 10.1179/1476830514Y.0000000119. PubMed DOI

Hsieh L.C., Hsieh S.L., Chen C.T., Chung J.G., Wang J.J., Wu C.C. Induction of α-Phellandrene on Autophagy in Human Liver Tumor Cells. Am. J. Chin. Med. 2015;43:121–136. doi: 10.1142/S0192415X15500081. PubMed DOI

Hsieh S.L., Li Y.C., Chang W.C., Chung J.G., Hsieh L.C., Wu C.C. Induction of Necrosis in Human Liver Tumor Cells by α-Phellandrene. Nutr. Cancer. 2014;66:970–979. doi: 10.1080/01635581.2014.936946. PubMed DOI

Lin J.J., Hsu S.C., Lu K.W., Ma Y.S., Wu C.C., Lu H.F., Chen J.C., Lin J.G., Wu P.P., Chung J.G. α-Phellandrene-induced apoptosis in mice leukemia WEHI-3 cells in vitro. Environ. Toxicol. 2015 doi: 10.1002/tox.22168. PubMed DOI

Lin J.J., Lin J.H., Hsu S.C., Weng S.W., Huang Y.P., Tang N.Y., Lin J.G., Chung J.G. α-Phellandrene promotes immune responses in normal mice through enhancing macrophage phagocytosis and natural killer cell activities. In Vivo. 2013;27:809–814. PubMed

Yoshida N., Koizumi M., Adachi I., Kawakami J. Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products. Food Chem. Toxicol. 2006;44:2033–2039. doi: 10.1016/j.fct.2006.07.003. PubMed DOI

Ito K., Ito M. Sedative effects of vapor inhalation of the essential oil of Microtoena patchoulii and its related compounds. J. Nat. Med. 2011;65:336–343. doi: 10.1007/s11418-010-0502-x. PubMed DOI

Ito K., Ito M. The sedative effect of inhaled terpinolene in mice and its structure-activity relationships. J. Nat. Med. 2013;67:833–837. doi: 10.1007/s11418-012-0732-1. PubMed DOI

Pongprayoon U., Soontornsaratune P., Jarikasem S., Sematong T., Wasuwat S., Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part 1. The essential oil. Phytomedicine. 1997;3:319–322. doi: 10.1016/S0944-7113(97)80003-7. PubMed DOI

Ruberto G., Baratta M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000;69:167–174. doi: 10.1016/S0308-8146(99)00247-2. DOI

Kim H.J., Chen F., Wu C., Wang X., Chung H.Y., Jin Z. Evaluation of Antioxidant Activity of Australian Tea Tree (Melaleuca alternifolia) Oil and Its Components. J. Agric. Food Chem. 2004;52:2849–2854. doi: 10.1021/jf035377d. PubMed DOI

Adegoke G.O., Iwahashi H., Komatsu Y., Obuchi K., Iwahashi Y. Inhibition of food spoilage yeasts and aflatoxigenic moulds by monoterpenes of the spice Aframomum danielli. Flavour Fragr. J. 2000;15:147–150. doi: 10.1002/1099-1026(200005/06)15:3<147::AID-FFJ883>3.0.CO;2-0. DOI

Astani A., Reichling J., Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res. 2010;24:673–679. doi: 10.1002/ptr.2955. PubMed DOI PMC

Santos M.R.V., Moreira F.V., Fraga B.P., de Souza D.P., Bonjardim L.R., Quintans-Júnior L.J. Cardiovascular effects of monoterpenes: A review. Rev. Bras. Farmacogn. 2011;21:764–771. doi: 10.1590/S0102-695X2011005000119. DOI

Baldissera M.D., Grando T.H., Souza C.F., Gressler L.T., Stefani L.M., da Silva A.S., Monteiro S.G. In vitro and in vivo action of terpinen‑4‑ol, γ‑terpinene, and α‑terpinene against Trypanosoma evansi. Exp. Parasitol. 2016;162:43–48. doi: 10.1016/j.exppara.2016.01.004. PubMed DOI

Bourgou S., Pichette A., Marzouk B., Legault J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S. Afr. J. Bot. 2010;76:210–216. doi: 10.1016/j.sajb.2009.10.009. DOI

Bonesi M., Menichini F., Tundis R., Loizzo M.R., Conforti F., Passalacqua N.G., Statti G.A., Menichini N.G. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzym. Inhib. Med. Chem. 2010;25:622–628. doi: 10.3109/14756360903389856. PubMed DOI

Satou T., Miyahara N., Murakami S., Hayashi S., Koike K. Differences in the effects of essential oil from Citrus junos and (+)-limonene on emotional behavior in mice. J. Essent. Oil Res. 2012;24:493–500. doi: 10.1080/10412905.2012.705100. DOI

Aydin E., Turkez H., Tasdemir S. Anticancer and antioxidant properties of terpinolene in rat brain cells. Arhiv za Higijenu Rada i Toksikologiju. 2013;64:415–424. PubMed

Okumura N., Yoshida H., Nishimura Y., Kitagishi Y., Matsuda S. Terpinolene, a component of herbal sage, downregulates AKT1 expression in K562 cells. Oncol. Lett. 2012;3:321–324. PubMed PMC

Park I.K., Lee S.G., Choi D.H., Park J.D., Ahn Y.J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.) J. Stored Prod. Res. 2003;39:375–384. doi: 10.1016/S0022-474X(02)00030-9. DOI

Cheng S.S., Chang H.T., Lin C.Y., Chen P.S., Huang C.G., Chen W.J., Chang S.T. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag. Sci. 2009;65:339–343. doi: 10.1002/ps.1693. PubMed DOI

Graßmann J., Hippeli S., Spitzenberger R., Elstner E.F. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with α-tocopherol and β-carotene effectively prevents oxidation of LDL. Phytomedicine. 2005;12:416–423. doi: 10.1016/j.phymed.2003.10.005. PubMed DOI

Garozzo A., Timpanaro R., Bisignano B., Furneri P.M., Bisignano G., Castro A. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett. Appl. Microbiol. 2009;49:806–808. doi: 10.1111/j.1472-765X.2009.02740.x. PubMed DOI

Pirbalouti A.G., Amirkhosravi A., Bordbar F. Diversity in the chemical composition of essential oils of Ziziphora tenuior as a potential source of pulegone. Chemija. 2013;24:234–239.

Vogt J.T., Shelton T.G., Merchant M.E., Russel S.A., Tanley M.J., Appel A.G. Efficacy of the three citrus oil formulations against Solenopsis invicta Buren (Hymenoptera: Formicidae), the red imported fire ant. J. Agric. Urban Entomol. 2002;19:159–171.

Lee S., Peterson C.J., Coats J.R. Fumigation toxicity of monoterpenoids to several stored product insects. J. Stored Prod. Res. 2003;39:77–85. doi: 10.1016/S0022-474X(02)00020-6. DOI

Rozza A.L., Moraes T.M., Kushima H., Tanimoto A., Marques M.O., Bauab T.M., Hiruma-Lima C.A., Pellizzon C.H. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem.-Biol. Interact. 2011;189:82–89. doi: 10.1016/j.cbi.2010.09.031. PubMed DOI

Erasto P., Viljoen A.M. Limonene—A review: Biosynthetic, ecological and pharmacological relevance. Nat. Prod. Commun. 2008;3:1193–1202.

Maróstica M.R., Jr., Pastore G.M. Limonene and Its Oxyfunctionalized Compounds—Biotransformation by Microorganisms and Their Role as Functional Bioactive Compounds. Food Sci. Biotechnol. 2009;18:833–841.

Sharopov F.S., Setzer W.N. Chemical diversity of Ziziphora clinopodioides: Composition of the essential oil of Z. clinopodioides from Tajikistan. Nat. Prod. Commun. 2011;6:695–698. PubMed

Samber N., Khan A., Varma A., Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015;53:1496–1504. doi: 10.3109/13880209.2014.989623. PubMed DOI

Jirovetz L., Buchbauer G., Bail S., Denkova Z., Slavchev A., Stoyanova A., Schmidt E., Geissler M. Antimicrobial activities of essential oils of mint and peppermint as well as some of their main compounds. J. Essent. Oil Res. 2009;21:363–366. doi: 10.1080/10412905.2009.9700193. DOI

Hussain A.I., Anwar F., Nigam P.S., Ashraf M., Gilani A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010;90:1827–1836. doi: 10.1002/jsfa.4021. PubMed DOI

Kumar P., Mishra S., Malik A., Satya S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod. 2011;34:802–817. doi: 10.1016/j.indcrop.2011.02.019. DOI

Herrera J.M., Zunino M.P., Dambolena J.S., Pizzolitto R.P., Ganan N.A., Lucini E.I., Zygadlo J.A. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind. Crop Prod. 2015;70:435–442. doi: 10.1016/j.indcrop.2015.03.074. DOI

Xue J., Li H., Deng X., Ma Z., Fu Q., Ma S. l-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol. Biochem. Behav. 2015;134:42–48. doi: 10.1016/j.pbb.2015.04.014. PubMed DOI

Bowers W.S., Ortego F., You X., Evans P.H. Insect repellents from the Chinese prickly ash Zanthoxylum bungeanum. J. Nat. Prod. 1993;56:935–938. doi: 10.1021/np50096a019. DOI

Abdelgaleil S.A.M., Abbassy M.A., Belal A.S.H., Rasoul M.A.A. Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresour. Technol. 2008;99:5947–5950. doi: 10.1016/j.biortech.2007.10.043. PubMed DOI

Ketoh G.K., Koumaglo H.K., Glitho I.A., Huignard J. Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development. Fitoterapia. 2006;77:506–510. doi: 10.1016/j.fitote.2006.05.031. PubMed DOI

Shahverdi A.R., Rafii F., Tavassoli F., Bagheri M., Attar F., Ghahraman A. Piperitone from Mentha longifolia var. chorodictya Rech F. reduces the nitrofurantoin resistance of strains of Enterobacteriaceae. Phytother. Res. 2004;18:911–914. doi: 10.1002/ptr.1566. PubMed DOI

Shahverdi A.R., Mirzaie S., Rafii F., Kakavand M., Foroumadi A. Monoterpenes as nitrofurantoin resistance modulating agents: Minimal structural requirements, molecular dynamics simulations, and the effect of piperitone on the emergence of nitrofurantoin resistance in Enterobacteriaceae. J. Mol. Model. 2015;21:198. doi: 10.1007/s00894-015-2741-y. PubMed DOI

Cárdenas-Ortega N.C., Zavala-Sanchez M.A., Aguirre-Rivera J.R., Pérez-González C., Pérez-Gutiérrez S. Chemical Composition and Antifungal Activity of Essential Oil of Chrysactinia mexicana Gray. J Agric. Food Chem. 2005;53:4347–4349. doi: 10.1021/jf040372h. PubMed DOI

Ozturk S., Ercisli S. The chemical composition of essential oil and in vitro antibacterial activities of essential oil and methanol extract of Ziziphora persica Bunge. J. Ethnopharmacol. 2006;106:372–376. doi: 10.1016/j.jep.2006.01.014. PubMed DOI

Oumzil H., Ghoulami S., Rhajaoui M., Ilidrissi A., Fkih-Tetouani S., Faid M., Benjouad A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002;16:727–731. doi: 10.1002/ptr.1045. PubMed DOI

Koliopoulos G., Pitarokili D., Kioulos E., Michaelakis A., Tzakou O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010;107:327–335. doi: 10.1007/s00436-010-1865-3. PubMed DOI

Tripathi A.K., Prajapati V., Ahmad A., Aggarwal K.K., Khanuja S.P. Piperitenone oxide as toxic, repellent, and reproduction retardant toward malarial vector Anopheles stephensi (Diptera: Anophelinae) J. Med. Entomol. 2004;41:691–698. doi: 10.1603/0022-2585-41.4.691. PubMed DOI

Sousa P.J.C., Linard C.F., Azevedo-Batista D., Oliveira A.C., Coelho-de-Souza A.N., Leal-Cardoso J.H. Antinociceptive effects of the essential oil of Mentha x villosa leaf and its major constituent piperitenone oxide in mice. Braz. J. Med. Biol. Res. 2009;42:655–659. PubMed

Civitelli L., Panella S., Marcocci M.E., de Petris A., Garzoli S., Pepi F., Vavala E., Ragno R., Nencioni L., Palamara A.T., et al. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. Phytomedicine. 2014;21:857–865. doi: 10.1016/j.phymed.2014.01.013. PubMed DOI

Meepagala K.M., Kuhajek J.M., Sturtz G.D., Wedge D.E. Vulgarone B, the Antifungal Constituent in the Steam-Distilled Fraction of Artemisia douglasiana. J. Chem. Ecol. 2003;29:1771–1780. doi: 10.1023/A:1024842009802. PubMed DOI

Papachristos D.P., Karamanoli K.I., Stamopoulos D.C., Menkissoglu-Spiroudi U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say) Pest Manag. Sci. 2004;60:514–520. doi: 10.1002/ps.798. PubMed DOI

Sezik E., Tümen G., Başer K.H.C. Ziziphora tenuior L. a new source of pulegone. Flav. Fragr. J. 1991;6:101–104. doi: 10.1002/ffj.2730060116. DOI

Thodgdon-A J., Inprakhon P. Composition and biological activities of essential oils from Limnophila geoffrayi Bonati. World J. Microbiol. Biotechnol. 2009;25:1313–1320. doi: 10.1007/s11274-009-0016-4. DOI

De Cássia da Silveira e Sá R., Andrade L.N., de Sousa D.P. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18:1227–1254. doi: 10.3390/molecules18011227. PubMed DOI PMC

Fawzy G.A., Al Ati H.Y., El Gamal A.A. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Pharmacogn. Mag. 2013;9:28–32. doi: 10.4103/0973-1296.108133. PubMed DOI PMC

Znini M., Cristofari G., Majidi L., Paolini J., Disjobert J.M., Costa J. Essential oil composition and antifungal activity of Pulicaria mauritanica Coss., against postharvest phytopathogenic fungi in apples. LWT Food Sci. Technol. 2013;54:564–569. doi: 10.1016/j.lwt.2013.05.030. DOI

Han J., Kim S.I., Choi B.R., Lee S.G., Ahn Y.J. Fumigant toxicity of lemon eucalyptus oil constituents to acaricide-susceptible and acaricide-resistant Tetranychus urticae. Pest Manag. Sci. 2011;67:1583–1588. doi: 10.1002/ps.2216. PubMed DOI

Kamatou G.P.P., Vermaak I., Viljoen A.M., Laqrence B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15–25. doi: 10.1016/j.phytochem.2013.08.005. PubMed DOI

Rozza A.L., Hiruma-Lima C.A., Takahira R.K., Padovani C.R., Pellizzon C.H. Effect of menthol in experimentally induced ulcers: Pathways of gastroprotection. Chem.-Biol. Interact. 2013;206:272–278. doi: 10.1016/j.cbi.2013.10.003. PubMed DOI

Rozza A.L., Meira de Faria F., Souza Brito A.R., Pellizon C.H. The gastroprotective effect of menthol: Involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS ONE. 2014;9:e86686. doi: 10.1371/journal.pone.0086686. PubMed DOI PMC

Ton H.T., Smart A.E., Aguilar B.L., Olson T.T., Kellar K.J., Ahern G.P. Menthol enhances the desensitization of human α3β4 nicotinic acetylcholine receptors. Mol. Pharmacol. 2015;88:256–264. doi: 10.1124/mol.115.098285. PubMed DOI PMC

Orhan I., Kartal M., Kan Y., Sener B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Naturforsch. C J. Biosci. 2008;63:547–553. PubMed

Osawa K., Saeki T., Yasuda H., Hamashima H., Sasatsu M., Arai T. The antibacterial activities of peppermint oil and green tea polyphenols, alone and in combination, against enterohemorrhagic Escherichia coli. Biocontrol. Sci. 1999;4 doi: 10.4265/bio.4.1. DOI

Park J.H., Yang J.Y., Lee H.S. Acaricidal activity of constituents derived from peppermint oil against Tyrophagus putrescentiae. J. Food Protect. 2014;77:1819–1823. doi: 10.4315/0362-028X.JFP-14-107. PubMed DOI

De Sousa D.P., Raphael E., Brocksom U., Brocksom T.J. Sedative effect of monoterpene alcohols in mice: A preliminary screening. Z. Naturforsch. C J. Biosci. 2007;62:563–566. doi: 10.1515/znc-2007-7-816. PubMed DOI

Giweli A.A., Dzamic A.M., Sokovic M.D., Ristic M.S., Marin. P.D. Chemical composition, antioxidant and antimicrobial activities of essential oil of Thymus algeriensis wild-growing in Libya. Cent. Eur. J. Biol. 2013;8:504–511. doi: 10.2478/s11535-013-0150-0. DOI

Ho C.L., Su Y.C. Composition, antioxidant and antimicrobial activities of the leaf essential oil of Machilus japonica from Taiwan. Nat. Prod. Commun. 2012;7:109–112. PubMed

Bouchra C., Achouri M., Hassani L.M.I., Hmamouchi M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J. Ethnopharmacol. 2003;89:165–169. doi: 10.1016/S0378-8741(03)00275-7. PubMed DOI

Kurdelas R.R., Lopez S., Lima B., Feresin G.E., Zygadlo J., Zacchino S., López M.L., Tapia A., Freile M.L. Chemical composition, anti-insect and antimicrobial activity of Baccharis darwinii essential oil from Argentina, Patagonia. Ind. Crop Prod. 2012;40:261–267. doi: 10.1016/j.indcrop.2012.03.024. DOI

Zuzarte M., Goncalves M.J., Cavaleiro C., Cruz M.T., Benzarti A., Marongiu B., Maxia A., Piras A., Salgueiro L. Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Ind. Crop Prod. 2013;44:97–103. doi: 10.1016/j.indcrop.2012.11.002. DOI

Ahmad A., Khan A., Manzoor N. Reversal of efflux-mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013;48:80–86. doi: 10.1016/j.ejps.2012.09.016. PubMed DOI

Farias-Junior P.A., Rios M.C., Moura T.A., Almeida R.P., Alves P.B., Blank A.F., Fernandes R.P.M., Scher R. Leishmanicidal activity of carvacrol-rich essential oil from Lippia sidoides Cham. Biol. Res. 2012;45:399–402. doi: 10.4067/S0716-97602012000400012. PubMed DOI

Mota M.L., Lobo L.T., Costa J.M., Costa L.S., Rocha H.A., Rocha e Silva L.F., Pohlit A.M., Neto V.F. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in northeastern Brazil. Planta Med. 2012;78:658–664. doi: 10.1055/s-0031-1298333. PubMed DOI

Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Phytochemistry and Nematicidal Activity of the Essential Oils from 8 Greek Lamiaceae Aromatic Plants and 13 Terpene Components. J. Agric. Food Chem. 2010;58:7856–7863. doi: 10.1021/jf100797m. PubMed DOI

Santoyo S., Jaime L., Garcia-Risco M.R., Ruiz-Rodríguez A., Reglero G. Antiviral Properties of Supercritical CO2 Extracts from Oregano and Sage. Int. J. Food Prop. 2014;17:1150–1161. doi: 10.1080/10942912.2012.700539. DOI

Melo J.O., Fachin A.L., Rizo W.F., Jesus H.C.R., Arrigoni-Blank M.F., Alves P.B., Marins M.A., França S.C., Blank A.F. Cytotoxic effects of essential oils from three Lippia gracilis Schauer genotypes on HeLa, B16, and MCF-7 cells and normal human fibroblasts. Genet. Mol. Res. 2014;13:2691–2697. doi: 10.4238/2014.April.8.12. PubMed DOI

Jaafari A., Mouse H.A., Rakib E.M., Tilaoui M., Benbakhta C., Boulli A., Abbad A., Zyad A. Chemical composition and antitumor activity of different wild varieties of Moroccan thyme. Rev. Bras. Farmacogn. 2007;17:477–491. doi: 10.1590/S0102-695X2007000400002. DOI

Pathania A.S., Guru S.K., Verma M.K., Sharma C., Abdullah S.T., Malik F., Chandra S., Katoch M., Bhushan S. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem. Toxicol. 2013;62:246–254. doi: 10.1016/j.fct.2013.08.037. PubMed DOI

Deb D.D., Parimala G., Saravana Devi S., Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem.-Biol. Interact. 2011;193:97–106. doi: 10.1016/j.cbi.2011.05.009. PubMed DOI

Vicuna G.C., Stashenko E.E., Fuentes J.L. Chemical composition of the Lippia origanoides essential oils and their antigenotoxicity against bleomycin-induced DNA damage. Fitoterapia. 2010;81:343–349. doi: 10.1016/j.fitote.2009.10.008. PubMed DOI

Riella K.R., Marinho R.R., Santos J.S., Pereira-Filho R.N., Cardoso J.C., Albuquerque-Junior R.L., Thomazzi S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol. 2012;143:656–663. doi: 10.1016/j.jep.2012.07.028. PubMed DOI

Liang D., Li F., Fu Y., Cao Y., Song X., Wang T., Wang W., Guo M., Zhou E., Li D., et al. Thymol Inhibits LPS-Stimulated Inflammatory Response via Down-Regulation of NF-κB and MAPK Signaling Pathways in Mouse Mammary Epithelial Cells. Inflammation. 2014;37:214–222. doi: 10.1007/s10753-013-9732-x. PubMed DOI

Zhou E., Fu Y., Wei Z., Yu Y., Zhang X., Yang Z. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia. 2014;96:131–137. doi: 10.1016/j.fitote.2014.04.016. PubMed DOI

Wei Z., Zhou E., Guo C., Fu Y., Yu Y., Li Y., Yao M., Zhang N., Yang Z. Thymol inhibits Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb. Pathog. 2014;71:15–19. PubMed

Alavinezhad A., Boskabady M.H. Antiinflammatory, Antioxidant, and Immunological Effects of Carum copticum L. and Some of Its Constituents. Phytother. Res. 2014;28:1739–1748. doi: 10.1002/ptr.5200. PubMed DOI

Archana P.R., Rao B.N., Ballal M., Rao B.S. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity. Mutat. Res. Gen. Tox. Environ. 2009;680:70–77. doi: 10.1016/j.mrgentox.2009.09.010. PubMed DOI

Horvathova E., Navarova J., Galova E., Sevcovicova A., Chodakova L., Snahnicanova Z., Melusova M., Kozics K., Slamenova D. Assessment of Antioxidative, Chelating, and DNA-Protective Effects of Selected Essential Oil Components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of Plants and Intact Rosmarinus officinalis Oil. J. Agric. Food Chem. 2014;62:6632–6639. doi: 10.1021/jf501006y. PubMed DOI

El-Sayed E.S.M., Mansour A.M., Abdul-Hameed M.S. Thymol and Carvacrol Prevent Doxorubicin-Induced Cardiotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats. J. Biochem. Mol. Toxic. 2016;30:37–44. doi: 10.1002/jbt.21740. PubMed DOI

Calo R., Visone C.M., Marabini L. Thymol and Thymus Vulgaris L. activity against UVA- and UVB-induced damage in NCTC 2544 cell line. Mutat. Res. Gen. Tox. En. 2015;791:30–37. doi: 10.1016/j.mrgentox.2015.07.009. PubMed DOI

Kazemi M., Rostami H. Chemical composition and biological activities of Iranian Achillea wilhelmsii L. essential oil: A high effectiveness against Candida spp. and Escherichia strains. Nat. Prod. Res. 2015;29:286–288. doi: 10.1080/14786419.2014.953949. PubMed DOI

Alitonou G., Tchobo F., Avlessi F., Sohounhloue D.K., Menut C. Aeollanthus pubescens Benth. from Benin: A Potential Source of Essential Oil with High Antiradical Efficiency. J. Essent. Oil Bear. Plants. 2013;16:308–314. doi: 10.1080/0972060X.2013.813203. DOI

Kavoosi G., Teixeira da Silva J.A., Saharkhiz M.J. Inhibitory effects of Zataria multiflora essential oil and its main components on nitric oxide and hydrogen peroxide production in glucose-stimulated human monocyte. Food Chem. Toxicol. 2012;50:3079–3085. doi: 10.1016/j.fct.2012.06.002. PubMed DOI

Ribeiro A.R.S., Diniz P.B.F., Pinheiro M.S., Albuquerque-Júnior R.C.L., Thomazzi S.M. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K+ channels, and gastric mucus secretion. Chem.-Biol. Interact. 2016;244:121–128. doi: 10.1016/j.cbi.2015.12.004. PubMed DOI

García D.A., Bujons J., Vale C., Suñol C. Allosteric positive interaction of thymol with the GABAA receptor in primary cultures of mouse cortical neurons. Neuropharmacology. 2006;50:25–35. doi: 10.1016/j.neuropharm.2005.07.009. PubMed DOI

Saravanan S., Pari L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur. J. Pharmacol. 2015;761:279–287. doi: 10.1016/j.ejphar.2015.05.034. PubMed DOI

Saravanan S., Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem.-Biol. Interact. 2016;245:1–11. doi: 10.1016/j.cbi.2015.11.033. PubMed DOI

Basch E., Ulbricht C., Hammerness P., Bevins A., Sollars D. Thyme (Thymus vulgaris L.), thymol. J. Herb. Pharmacother. 2004;4:49–67. doi: 10.1080/J157v04n01_07. PubMed DOI

Oh J., Bowling J.J., Carroll J.F., Demirci B., Başer K.H.C., Leininger T.D., Bernier U.R., Hamann M.T. Natural product studies of U.S. endangered plants: Volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks. Phytochemistry. 2012;80:28–36. doi: 10.1016/j.phytochem.2012.05.001. PubMed DOI PMC

Park S.N., Lim Y.K., Freire M.O., Cho E., Jin D., Kook J.K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe. 2012;18:369–372. doi: 10.1016/j.anaerobe.2012.04.001. PubMed DOI

Bader A., Panizzi L., Cioni P.L., Flamini G. Achillea ligustica: Composition and antimicrobial activity of essential oils from the leaves, flowers and some pure constituents. Cent. Eur. J. Biol. 2007;2:206–212. doi: 10.2478/s11535-007-0020-3. DOI

Ellouze I., Abderrabba M., Sabaou N., Mathieu F., Lebrihi A., Bouajila J. Seasonal variation impact on Citrus aurantium leaves essential oil: Chemical composition and biological activities. J. Food Sci. 2012;77:173–180. doi: 10.1111/j.1750-3841.2012.02846.x. PubMed DOI

Müller G.C., Junnila A., Butler J., Kravchenko V.D., Revay E.E., Weiss R.W., Schlein Y. Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J. Vector Ecol. 2009;34:2–8. doi: 10.1111/j.1948-7134.2009.00002.x. PubMed DOI

Yang F., Long E., Wen J., Cao L., Zhu C., Hu H., Ruan Y., Okanurak K., Hu H., Wei X., et al. Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum. Parasite Vector. 2014;7:407. doi: 10.1186/1756-3305-7-407. PubMed DOI PMC

Peana A.T., De Montis M.G., Sechi S., Sircana G., D’Aquila P.S., Pippia P. Effects of (−)‑linalool in the acute hyperalgesia induced by carrageenan, l-glutamate and prostaglandin E2. Eur. J. Pharmacol. 2004;497:279–284. doi: 10.1016/j.ejphar.2004.06.006. PubMed DOI

Huo M., Cui X., Xue J., Chi G., Gao R., Deng X., Guan S., Wei J., Soromou L.W., Feng H., et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J. Surg. Res. 2013;180:e47–e54. doi: 10.1016/j.jss.2012.10.050. PubMed DOI

Ma J., Xu H., Wu J., Qu C., Sun F., Xu S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int. Immunopharmacol. 2015;29:708–713. doi: 10.1016/j.intimp.2015.09.005. PubMed DOI

Loizzo M.R., Tundis R., Menichini F., Saab A.M., Statti G.A. Antiproliferative effects of essential oils and their major constituents in human renal adenocarcinoma and amelanotic melanoma cells. Cell Prolif. 2008;41:1002–1012. doi: 10.1111/j.1365-2184.2008.00561.x. PubMed DOI PMC

Gu Y., Ting Z., Qiu X., Zhang X., Gan X., Fang Y., Xu X., Xu R. Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010;268:19–24. doi: 10.1016/j.tox.2009.11.013. PubMed DOI

Maeda H., Yamazaki M., Katagata Y. Kuromoji (Lindera umbellata) essential oil-induced apoptosis and differentiation in human leukemia HL-60 cells. Exp. Ther. Med. 2012;3:49–52. doi: 10.3892/etm.2011.357. PubMed DOI PMC

Chang M.Y., Shieh D.E., Chen C.C., Yeh C.S., Dong H.P. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs. Int. J. Mol. Sci. 2015;16:28169–28179. doi: 10.3390/ijms161226089. PubMed DOI PMC

Cho S.Y., Jun H.J., Lee J.H., Jia Y., Kim K.H., Lee S.J. Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett. 2011;585:3289–3296. doi: 10.1016/j.febslet.2011.09.012. PubMed DOI

Kladniew B.R., Polo M., Villegas S.M., Galle M., Crespo R., de Bravo M.G. Synergistic antiproliferative and anticholesterogenic effects of linalool, 1,8-cineole, and simvastatin on human cell lines. Chem.-Biol. Interact. 2014;214:57–68. doi: 10.1016/j.cbi.2014.02.013. PubMed DOI

Linck V.M., Da Silva A.L., Figueiró M., Caramão E.B., Moreno P.R.H., Elisabetsky E. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine. 2010;17:679–683. doi: 10.1016/j.phymed.2009.10.002. PubMed DOI

Guzman-Gutierrez S.L., Gomez-Cansino R., Garcia-Zebadua J.C., Jimenez-Perez N.C., Reyes-Chilpa R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. J. Ethnopharmacol. 2012;143:673–679. doi: 10.1016/j.jep.2012.07.026. PubMed DOI

Kessler A., Sahin-Nadeem H., Lummis S.C.R., Weigel I., Pischetsrieder M., Buettner A., Villmann C. GABAA receptor modulation by terpenoids from Sideritis extracts. Mol. Nutr. Food Res. 2014;58:851–862. doi: 10.1002/mnfr.201300420. PubMed DOI PMC

Park T.J., Park Y.S., Lee T.G., Ha H., Kim K.T. Inhibition of acetylcholine-mediated effects by borneol. Biochem. Pharmacol. 2003;65:83–90. doi: 10.1016/S0006-2952(02)01444-2. PubMed DOI

Horvathova E., Slamenova D., Marsalkova L., Sramkova M., Wsolova L. Effects of borneol on the level of DNA damage induced in primary rat hepatocytes and testicular cells by hydrogen peroxide. Food Chem. Toxicol. 2009;47:1318–1323. doi: 10.1016/j.fct.2009.03.002. PubMed DOI

Zhong W., Cui Y., Yu Q., Xie X., Liu Y., Wei M., Ci X., Peng L. Modulation of LPS-Stimulated Pulmonary Inflammation by Borneol in Murine Acute Lung Injury Model. Inflammation. 2014;37:1148–1157. doi: 10.1007/s10753-014-9839-8. PubMed DOI

Juhás S., Cikos S., Czikkova S., Vesela J., Il’kova G., Hájek T., Domaracka K., Domaracky M., Bujnakova D., Rehák P., et al. Effects of Borneol and Thymoquinone on TNBS-Induced Colitis in Mice. Folia Biol. 2008;54:1–7. PubMed

Qi H.P., Gao X.C., Zhang L.Q., Wei S.Q., Bi S., Yang Z.C., Cui H. In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur. J. Pharmacol. 2013;705:20–25. doi: 10.1016/j.ejphar.2013.02.031. PubMed DOI

Zhang Q., Wu D., Wu J., Ou Y., Mu C., Han B., Zhang Q. Improved blood-brain barrier distribution: Effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling. J. Ethnopharmacol. 2015;162:270–277. doi: 10.1016/j.jep.2015.01.003. PubMed DOI

Asili J., Emami S.A., Eynolghozat R., Noghab Z.S., Bazzaz B.S.F., Sahebkar A. Chemical Composition and in Vitro Efficacy of Essential Oil of Seven Artemisia Species Against ESBL Producing Multidrug-Resistant Escherichia coli. J. Essent. Oil Bear. Plants. 2015;18:124–145. doi: 10.1080/0972060X.2014.895181. DOI

Silva-Filho J.C., Oliveira N.N., Arcanjo D.D., Quintans-Júnior L.J., Cavalcanti S.C., Santos M.R., Oliveira Rde C., Oliveira A.P. Investigation of Mechanisms Involved in (−)‑Borneol-Induced Vasorelaxant Response on Rat Thoracic Aorta. Basic Clin. Pharmacol. Toxicol. 2012;110:171–177. doi: 10.1111/j.1742-7843.2011.00784.x. PubMed DOI

Granger R.E., Campbell E.L., Johnston G.A.R. (+)- And (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem. Pharmacol. 2005;69:1101–1111. doi: 10.1016/j.bcp.2005.01.002. PubMed DOI

Su J., Lai H., Chen J., Li L., Wong Y.S., Chen T., Li X. Natural Borneol, a Monoterpenoid Compound, Potentiates Selenocystine-Induced Apoptosis in Human Hepatocellular Carcinoma Cells by Enhancement of Cellular Uptake and Activation of ROS-Mediated DNA Damage. PLoS ONE. 2013;8:e63502. doi: 10.1371/journal.pone.0063502. PubMed DOI PMC

Lin A.L., Shangari N., Chan T.S., Remirez D., O’Brien P.J. Herbal monoterpene alcohols inhibit propofol metabolism and prolong anesthesia time. Life Sci. 2006;79:21–29. doi: 10.1016/j.lfs.2005.12.029. PubMed DOI

Letessier M.P., Svoboda K.P., Walters D.R. Antifungal Activity of the Essential Oil of Hyssop (Hyssopus officinalis) J. Phytopathol. 2001;149:673–678. doi: 10.1046/j.1439-0434.2001.00692.x. DOI

Chen N., Sun G., Yuan X., Hou J., Wu Q., Soromou L.W., Feng H. Inhibition of lung inflammatory responses by bornyl acetate is correlated with regulation of myeloperoxidase activity. J. Surg. Res. 2014;186:436–455. doi: 10.1016/j.jss.2013.09.003. PubMed DOI

Yang H., Zhao R., Chen H., Jia P., Bao L., Tang H. Bornyl Acetate Has an Anti-inflammatory Effect in Human Chondrocytes Via Induction of IL-11. IUBMB Life. 2014;66:854–859. doi: 10.1002/iub.1338. PubMed DOI

Wang X., Ma A., Shi W., Geng M., Zhong X., Zhao Y. Quercetin and Bornyl Acetate Regulate T-Lymphocyte Subsets and INF-γ/IL-4 Ratio In Utero in Pregnant Mice. Evid.-Based Complement. Altern. Med. 2011:745262. doi: 10.1155/2011/745262. PubMed DOI PMC

Yan R., Yang Y., Zou G. Cytotoxic and apoptotic effects of Lindera strychnifolia leaf essential oil. J. Essent. Oil Res. 2014;26:308–314. doi: 10.1080/10412905.2013.840811. DOI

Silva L.L., Garlet Q.I., Benovit S.C., Dolci G., Mallmann C.A., Bürger M.E., Baldisserotto B., Longhi S.J., Heinzmann B.M. Sedative and anesthetic activities of the essential oils of Hyptis mutabilis (Rich.) Briq. and their isolated components in silver catfish (Rhamdia quelen) Braz. J. Med. Biol. Res. 2013;46:771–779. doi: 10.1590/1414-431X20133013. PubMed DOI PMC

Nobrega F.F.F., Salvadori M.G.S.S., Masson C.J., Mello C.F., Nascimento T.S., Leal-Cardoso J.H., de Sousa D.P., Almeida R.N. Monoterpenoid terpinen-4-ol exhibits anticonvulsant activity in behavioural and electrophysiological studies. Oxid. Med. Cell. Longev. 2014;2014:703848. doi: 10.1155/2014/703848. PubMed DOI PMC

Aoshima H., Oda K., Orihara Y., Hara A., Shigemori Y., Tan N., Koda H., Kiso Y. Effects of essential oils on the response of GABAA receptors, sleeping time in mice induced by sleeping drug and plasma adrenocorticotropic hormone levels of rats. Aroma Res. 2009;10:58–64.

Maia-Joca R.P.M., Joca H.C., Ribeiro F.J.P., do Nascimento R.V., Silva-Alves K.S., Cruz J.S., Coleho-de-Souza A.N., Leal-Cardoso J.H. Investigation of Terpinen-4-ol Effects on Vascular Smooth Muscle Relaxation. Life Sci. 2014;115:52–58. doi: 10.1016/j.lfs.2014.08.022. PubMed DOI

Bozzuto G., Colone M., Toccacieli L., Stringaro A., Molinari A. Tea tree oil might combat melanoma. Planta Med. 2011;77:54–56. doi: 10.1055/s-0030-1250055. PubMed DOI

Greay S.J., Ireland D.J., Kissick H.T., Levy A., Beilharz M.W., Riley T.V., Carson C.F. Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemoth. Pharm. 2010;65:877–888. doi: 10.1007/s00280-009-1093-7. PubMed DOI

Wu C.S., Chen Y.J., Chen J.J.W., Shieh J.J., Huang C.H., Lin P.S., Chang G.C., Chang J.T., Lin C.C. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer in Vitro and in Vivo. Evid. Based Complement. Altern. Med. 2012;12:818261. doi: 10.1155/2012/818261. PubMed DOI PMC

Calcabrini A., Stringaro A., Toccacieli L., Meschini S., Marra M., Colone M., Salvatore G., Mondello F., Arancia G., Molinari A. Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J. Investig. Dermatol. 2004;122:349–360. doi: 10.1046/j.0022-202X.2004.22236.x. PubMed DOI

Ninomiya K., Hayama K., Ishijima S.A., Maruyama N., Irie H., Kurihara J., Abe S. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro. Biol. Pharm. Bull. 2013;36:838–844. doi: 10.1248/bpb.b13-00033. PubMed DOI

Hart P.H., Brand C., Carson C.F., Riley T.V., Prager R.H., Finlay-Jones J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000;49:619–626. doi: 10.1007/s000110050639. PubMed DOI

Loughlin R., Gilmore B.F., McCarron P.A., Tunney M.M. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol. 2008;46:428–433. doi: 10.1111/j.1472-765X.2008.02334.x. PubMed DOI

Hammer K.A., Carson C.F., Riley T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003;95:853–860. doi: 10.1046/j.1365-2672.2003.02059.x. PubMed DOI

You C., Guo S., Zhang W., Yang K., Geng Z., Du S., Wang C., Deng Z. Identification of repellent and insecticidal constituents from Artemisia mongolica essential oil against Lasioderma serricorne. J. Chem. 2015;2015 doi: 10.1155/2015/549057. DOI

Cosentino S., Tuberoso C.I.G., Pisano B., Satta M.L., Mascia V., Arzedi E., Palmas F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999;29:130–135. doi: 10.1046/j.1472-765X.1999.00605.x. PubMed DOI

Has A.T.C., Islam M.R., Baburin I., Hering S., Osman H., Mohamad H., Abdullah J.M. The inhibitory activity of nutmeg essential oil on GABAA α1β2γ2s receptors. Biomed. Res. 2014;25:543–550.

Quintans-Júnior L.J., Oliveira M.G., Santana M.F., Santana M.T., Guimarães A.G., Siqueira J.S., de Sousa D.P., Almeida R.N. α-Terpineol reduces nociceptive behavior in mice. Pharm. Biol. 2011;49:583–586. doi: 10.3109/13880209.2010.529616. PubMed DOI

Mulyaningsih S., Sporer F., Reichling J., Wink M. Antibacterial activity of essential oils from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011;49:893–899. doi: 10.3109/13880209.2011.553625. PubMed DOI

Klein G., Rüben C., Upmann M. Antimicrobial Activity of Essential Oil Components Against Potential Food Spoilage Microorganisms. Curr. Microbiol. 2013;67:200–208. doi: 10.1007/s00284-013-0354-1. PubMed DOI

Bagamboula C.F., Uyttendaele M., Debereve J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004;21:33–42. doi: 10.1016/S0740-0020(03)00046-7. DOI

Ultee A., Slump R.A., Steging G., Smid E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000;63:620–624. PubMed

Sanchez C., Aznar R., Sanchez G. The effect of carvacrol on enteric viruses. Int. J. Food Microbiol. 2015;192:72–76. doi: 10.1016/j.ijfoodmicro.2014.09.028. PubMed DOI

Arunasree K.M. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine. 2010;17:581–588. doi: 10.1016/j.phymed.2009.12.008. PubMed DOI

Bhakkiyalakshmi E., Suganya N., Sireesh D., Krishnamurthi K., Devi S.S., Rajaguru P., Ramkumar K.M. Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. Eur. J. Pharmacol. 2016;772:92–98. doi: 10.1016/j.ejphar.2015.12.046. PubMed DOI

Llana-Ruiz‑Cabello M., Gutierrez‑Praena D., Pichardo S., Moreno F.J., Bermúdez J.M., Aucejo S., Cameán A.M. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem. Toxicol. 2014;64:281–290. doi: 10.1016/j.fct.2013.12.005. PubMed DOI

Zeytinoglu H., Incesu Z., Baser K.H.C. Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human N-RAS oncogene. Phytomedicine. 2003;10:292–299. doi: 10.1078/094471103322004785. PubMed DOI

Lima M.S., Quintans-Júnior L.J., de Santana W.A., Kaneto C.M., Soares M.B. P., Villarreal C.F. Anti-inflammatory effects of carvacrol: Evidence for a key role of interleukin-10. Eur. J. Pharmacol. 2013;699:112–117. doi: 10.1016/j.ejphar.2012.11.040. PubMed DOI

Melo F.H.C., Venâncio E.T., de Sousa D.P., de França Fonteles M.M., de Vasconcelos S.M.M., Viana G.S.B., de Sousa F.C.F. Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: Involvement with GABAergic transmission. Fund. Clin. Pharmacol. 2010;24:437–443. doi: 10.1111/j.1472-8206.2009.00788.x. PubMed DOI

Boskabady M.H., Mahtaj L.G. Lung inflammation changes and oxidative stress induced by cigarette smoke exposure in guinea pigs affected by Zataria multiflora and its constituent, carvacrol. BMC Complement. Altern. Med. 2015;15 doi: 10.1186/s12906-015-0574-y. PubMed DOI PMC

Melo F.H.C., Rios E.R.V., Rocha N.F.M., Citó M.C.O., Fernandes M.L., de Sousa D.P., de Vasconcelos S.M.M., de Sousa F.C.F. Antinociceptive activity of carvacrol (5-isopropyl-2-methylphenol) in mice. J. Pharm. Pharmacol. 2012;64:1722–1729. doi: 10.1111/j.2042-7158.2012.01552.x. PubMed DOI

Jukic M., Politeo O., Maksimovic M., Milos M., Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 2007;21:259–261. doi: 10.1002/ptr.2063. PubMed DOI

Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem. 2014;62:7652–7670. doi: 10.1021/jf5023862. PubMed DOI

Baser K.H.C. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008;14:3106–3119. doi: 10.2174/138161208786404227. PubMed DOI

Andre W.P.P., Ribeiro W.L.C., Cavalcante G.S., dos Santos J.M.L., Macedo I.T.F., de Paula H.C.B., de Freitas R.M., de Morais S.M., de Melo J.V., Bevilaqua C.M.L. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet. Parasitol. 2016;218:52–58. doi: 10.1016/j.vetpar.2016.01.001. PubMed DOI

Damasceno S.R.B., Oliveira F.R.A., Carvalho N.S., Brito C.F., Silva I.S., Sousa F.B.M., Silva R.O., Sousa D.P., Barbosa A.L.R., Freitas R.M., et al. Carvacryl acetate, a derivative of carvacrol, reduces nociceptive and inflammatory response in mice. Life Sci. 2014;94:58–66. doi: 10.1016/j.lfs.2013.11.001. PubMed DOI

Pires L.F., Costa L.M., Cardoso de Almeida A.A., Silva O.A., Santos Cerqueira G., de Sousa D.P., Pires R.M., Satyal P., de Freitas R.M. Neuropharmacological effects of carvacryl acetate on δ-aminolevulinic dehydratase, Na+, K+-ATPase activities and amino acids levels in mice hippocampus after seizures. Chem. Biol. Interact. 2015;226:49–57. doi: 10.1016/j.cbi.2014.12.001. PubMed DOI

Pires L.F., Costa L.M., Silva O.A., Cerqueira G.S., de Sousa D.P., de Freitas R.M. Anxiolytic-like effects of carvacryl acetate, a derivative of carvacrol, in mice. Pharmacol. Biochem. Behav. 2013;112:42–48. doi: 10.1016/j.pbb.2013.09.001. PubMed DOI

Omolo M.O., Okinyo D., Ndiege I.O., Lwande W., Hassanali A. Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry. 2004;65:2797–2802. doi: 10.1016/j.phytochem.2004.08.035. PubMed DOI

Choi I.Y., Lim J.H., Hwang S., Lee J.C., Cho G.S., Kim W.K. Anti-ischemic and anti-inflammatory activity of (S)-cis-verbenol. Free Radical Res. 2010;44:541–551. doi: 10.3109/10715761003667562. PubMed DOI

Kubo I., Kinst-Hori I. Tyrosinase Inhibitors from Cumin. J. Agric. Food Chem. 1998;46:5338–5341. doi: 10.1021/jf980226+. DOI

Nitoda T., Fan M.D., Kubo I. Effects of Cuminaldehyde on Melanoma Cells. Phytother. Res. 2008;22:809–813. doi: 10.1002/ptr.2374. PubMed DOI

Kalpoutzakis E., Aligiannis N., Mentis A., Mitaku S., Charvala C. Composition of the essential oil of two Nepeta species and in vitro evaluation of their activity against Helicobacter pylori. Planta Med. 2001;67:880–883. doi: 10.1055/s-2001-18851. PubMed DOI

Birkett M.A., Hassanali A., Hoglund S., Pettersson J., Pickett J.A. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. 2011;72:109–114. doi: 10.1016/j.phytochem.2010.09.016. PubMed DOI

Bruce T.J.A., Birkett M.A., Blande J., Hooper A.M., Martin J.L., Khambay B., Prosser I., Smart L.E., Wadhams L.J. Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag. Sci. 2005;61:1115–1121. doi: 10.1002/ps.1102. PubMed DOI

Santos T.G., Dognini J., Begnini I.M., Rebelo R.A., Verdi M., de Gasper A.L., Dalmarco E.M. Chemical characterization of essential oils from Drimys angustifolia Miers (Winteraceae) and antibacterial activity of their major compounds. J. Braz. Chem. Soc. 2013;24:164–170. doi: 10.1590/S0103-50532013000100020. DOI

Nascimento A.M.A., Brandao M.G.L., Oliveira G.B., Fortes I.C., Chartone-Souza E. Synergistic bactericidal activity of Eremanthus erythropappus oil or β-bisabolene with ampicillin against Staphylococcus aureus. Antonie Leeuwenhoek. 2007;92:95–100. doi: 10.1007/s10482-006-9139-x. PubMed DOI

Cakir A., Kordali S., Zengin H., Izumi S., Hirata T. Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Fragr. J. 2004;19:62–68. doi: 10.1002/ffj.1279. DOI

Ulubelen A., Topcu G., Eriş C., Sönmez U., Kartal M., Kurucu S., Bozok-Johansson C. Terpenoids from Salvia sclarea. Phytochemistry. 1994;36:971–974. doi: 10.1016/S0031-9422(00)90474-6. PubMed DOI

Chavan M.J., Wakte P.S., Shinde D.B. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2010;17:149–151. doi: 10.1016/j.phymed.2009.05.016. PubMed DOI

Sibanda S., Chigwada G.P., Melvin G., Gwebu E.T., Noletto J.A., Schmidt J.M., Rea A.I., Setzer W.N. Composition and bioactivity of the leaf essential oil of Heteropyxis dehniae from Zimbabwe. J. Ethnopharmacol. 2004;92:107–111. doi: 10.1016/j.jep.2004.02.010. PubMed DOI

Park K.R., Nam D., Yun H.M., Lee S.G., Jang H.J., Sethi G., Cho S.K., Ahn K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett. 2011;312:178–188. doi: 10.1016/j.canlet.2011.08.001. PubMed DOI

Leal S.M., Pino N., Stashenko E.E., Martínez J.R., Escobar P. Antiprotozoal activity of essential oils derived from Piper spp. grown in Colombia. J. Essent. Oil Res. 2013;25:512–519. doi: 10.1080/10412905.2013.820669. DOI

Zhang W.J., You C.X., Yang K., Chen R., Wang Y., Wu Y., Geng Z.F., Chen H.P., Jiang H.Y., Su Y., et al. Bioactivity of essential oil of Artemisia argyi Levl. et Van. and its main compounds against Lasioderma serricorne. J. Oleo Sci. 2014;63:829–837. doi: 10.5650/jos.ess14057. PubMed DOI

Basha R.H., Sankaranarayanan C. β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats. Chem.-Biol. Interact. 2016;245:50–58. doi: 10.1016/j.cbi.2015.12.019. PubMed DOI

Calleja M.A., Vieites J.M., Montero-Melendez T., Torres M.I., Faus M.J., Gil A., Suárez A. The antioxidant effect of β‑caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Brit. J. Nutr. 2013;109:394–401. doi: 10.1017/S0007114512001298. PubMed DOI

Fernandes E.S., Passos G.F., Medeiros R., da Cunha F.M., Ferreira J., Campos M.M., Pianowski L.F., Calixto J.B. Anti-inflammatory effects of compounds α-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007;569:228–236. doi: 10.1016/j.ejphar.2007.04.059. PubMed DOI

Passos G.F., Fernandes E.S., da Cunha F.M., Ferreira J., Pianowski L.F., Campos M.M., Calixto J.B. Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. J. Ethnopharmacol. 2007;110:323–333. doi: 10.1016/j.jep.2006.09.032. PubMed DOI

Kubo I., Muroi H., Kubo A. Naturally occurring antiacne agents. J. Nat. Prod. 1994;57:9–17. doi: 10.1021/np50103a002. PubMed DOI

Loizzo M.R., Tundis R., Menichini F., Saab A.M., Statti G.A., Menichini F. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res. 2007;27:3293–3300. PubMed

Sylvestre M., Longtin A.P.A., Legault J. Volatile leaf constituents and anticancer activity of Bursera simaruba (L.) Sarg. essential oil. Nat. Prod. Commun. 2007;2:1273–1276.

Sylvestre M., Pichette A., Longtin A., Nagau F., Legault J. Essential oil analysis and anticancer activity of leaf essential oil of Croton flavens L. from Guadeloupe. J. Ethnopharmacol. 2006;103:99–102. doi: 10.1016/j.jep.2005.07.011. PubMed DOI

Sylvestre M., Pichette A., Lavoie S., Longtin A., Legault J. Composition and cytotoxic activity of the leaf essential oil of Comptonia peregrina (L.) Coulter. Phytother. Res. 2007;21:536–540. doi: 10.1002/ptr.2095. PubMed DOI

Venditti A., Bianco A., Nicoletti M., Quassinti L., Bramucci M., Lupidi G., Vitali L.A., Petrelli D., Papa F., Vittori S., et al. Phytochemical analysis, biological evaluation and micromorphological study of Stachys alopecuros (L.) Benth. subsp. divulsa (Ten.) Grande endemic to central Apennines, Italy. Fitoterapia. 2013;90:94–103. PubMed

Tundis R., Peruzzi L., Menichini F. Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. Phytochemistry. 2014;102:7–39. doi: 10.1016/j.phytochem.2014.01.023. PubMed DOI

Pérez-López A., Cirio A.T., Rivas-Galindo V.M., Waksman de Torres N. Activity against Streptococcus pneumoniae of the essential oil and δ-cadinene isolated from Schinus molle fruit. J. Essent. Oil Res. 2011;23:25–28. doi: 10.1080/10412905.2011.9700477. DOI

Zheljazkov V.D., Cantrell C.L., Tekwani B., Khan S.I. Content, Composition, and Bioactivity of the Essential Oils of Three Basil Genotypes as a Function of Harvesting. J. Agric. Food Chem. 2008;56:380–385. doi: 10.1021/jf0725629. PubMed DOI

Chang S.T., Chen P.F., Wang S.Y., Wu H.H. Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. J. Med. Entomol. 2001;38:455–457. doi: 10.1603/0022-2585-38.3.455. PubMed DOI

Chang S.T., Wang S.Y., Wu C.L., Chen P.F., Kuo Y.H. Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung. 2000;54:241–245. doi: 10.1515/HF.2000.041. DOI

Ho C.L., Liao P.C., Su Y.C. Composition and antimicrobial activities of the leaf essential oil of Machilus zuihoensis from Taiwan. Rev. Bras. Farmacogn. 2012;22:277–283. doi: 10.1590/S0102-695X2011005000213. DOI

Jeong J.B., Choi J., Lou Z., Jiang X., Lee S.H. Patchouli alcohol, an essential oil of Pogostemon cablin, exhibits anti-tumorigenic activity in human colorectal cancer cells. Int. Immunopharmacol. 2013;16:184–190. doi: 10.1016/j.intimp.2013.04.006. PubMed DOI

Xian Y.F., Li Y.C., Ip S.P., Lin Z.X., Lai X.P., Su Z.R. Anti-inflammatory effect of patchouli alcohol isolated from Pogostemonis Herba in LPS-stimulated RAW264.7 macrophages. Exp. Ther. Med. 2011;2:545–550. PubMed PMC

Li Y.C., Xian Y.F., Ip S.P., Su Z.R., Su J.Y., He J.J., Xie Q.F., Lai X.P., Lin Z.X. Anti-inflammatory activity of patchouli alcohol isolated from Pogostemonis Herba in animal models. Fitoterapia. 2011;82:1295–1301. doi: 10.1016/j.fitote.2011.09.003. PubMed DOI

Zheng Y.F., Xie J.H., Xu Y.F., Liang Y.Z., Mo Z.Z., Jiang W.W., Chen X.Y., Liu Y.H., Yu X.D., Huang P., et al. Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats. Chem.-Biol. Interact. 2014;222:27–36. doi: 10.1016/j.cbi.2014.08.008. PubMed DOI

Prakasia P.P., Nair A.S. Chemical fingerprint of essential oil components from fresh leaves of Glycosmis pentaphylla (Retz.) Correa. Pharma Innov. 2015;3:50–56.

García M., Gonzales-Coloma A., Donadel O.J., Ardanaz C.E., Tonn C.E., Sosa M.E. Insecticidal effects of Flourensia oolepis Blake (Asteraceae) essential oil. Biochem. Syst. Ecol. 2007;35:181–187. doi: 10.1016/j.bse.2006.10.009. DOI

Tavares W.S., Freitas S.S., Grazziotti G.H., Parente L.M.L., Lião L.M., Zanuncio J.C. Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae) Ind. Crop Prod. 2013;46:158–164. doi: 10.1016/j.indcrop.2013.01.023. DOI

Lee H.K., Park C., Ahn Y.J. Insecticidal activities of asarones identified in Acorus gramineus rhizome against Nilaparvata lugens (Homoptera: Delphacidae) and Plutella xylostella (Lepidoptera: Yponomeutoidae) Appl. Entomol. Zool. 2002;37:459–464. doi: 10.1303/aez.2002.459. DOI

Lee H.S. Antiplatelet property of Curcuma longa L. rhizome-derived ar-turmerone. Bioresour. Technol. 2006;97:1372–1376. doi: 10.1016/j.biortech.2005.07.006. PubMed DOI

Park S.Y., Jin M.L., Kim Y.H., Kim Y., Lee S.J. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int. Immunopharmacol. 2012;14:13–20. doi: 10.1016/j.intimp.2012.06.003. PubMed DOI

Kumar V. Turmeric (Curcuma longa): A valuable traditional medicine. Pharma Rev. 2006;4:77–80.

Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI

Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D., Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007;55:4863–4870. doi: 10.1021/jf0636465. PubMed DOI

Sharopov F., Braun M.S., Gulmurodov I., Khalifaev D., Isupov S., Wink M. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan. Foods. 2015;4:645–653. doi: 10.3390/foods4040645. PubMed DOI PMC

Ipek E., Zeytinoglu H., Okay S., Tuylu B.A., Kurcuoglu M., Baser K.H.C. Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem. 2005;93:551–556. doi: 10.1016/j.foodchem.2004.12.034. DOI

Franzios G., Mirotsou M., Hatziapostolou E., Kral J., Scouras Z.G., Mavragani-Tsipidou P. Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 1997;45:2690–2694. doi: 10.1021/jf960685f. DOI

Santana-Rios G., Orner G.A., Amantana A., Provost C., Wu S.Y., Dashwood R.H. Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutat. Res. 2001;495:61–74. doi: 10.1016/S1383-5718(01)00200-5. PubMed DOI

Cal K. Skin penetration of terpenes from essential oils and topical vehicles. Planta Med. 2006;72:311–316. doi: 10.1055/s-2005-916230. PubMed DOI

Savelev S., Okello E., Perry N.S.L., Wilkins R.M., Perry E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003;75:661–668. doi: 10.1016/S0091-3057(03)00125-4. PubMed DOI

Aliakbarlu J., Shameli F. In vitro antioxidant and antibacterial properties and total phenolic contents of essential oil from Thymus vulgaris, T. kotschyanus, Z. tenuior and Z. clinopodioides. Turk. J. Biochem. 2013;38:425–431. doi: 10.5505/tjb.2013.58070. DOI

Duru M.E., Oztürk M., Ugur A., Ceylan Ö. The constituents of essential oil and in vitro antimicrobial activity of Micromeria cilicia from Turkey. J. Ethnopharmacol. 2004;94:43–48. doi: 10.1016/j.jep.2004.03.053. PubMed DOI

Sivropoulou A., Kokkini S., Lanaras T., Arsenakis M. Antimicrobial activity of mint essential oils. J. Agric. Food Chem. 1995;43:2384–2388. doi: 10.1021/jf00057a013. DOI

Radulovic N.S., Blagojevic P.D., Stojanovic-Radic Z.Z., Stojanovic N.M. Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Curr. Med. Chem. 2013;20:932–952. doi: 10.2174/0929867311320070008. PubMed DOI

Nowotarska S., Nowotarski K., Friedman M. Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules. 2014;19:7497–7515. doi: 10.3390/molecules19067497. PubMed DOI PMC

Helander I.M., Alakomi H., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Gorris L.G.M., von Wright A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998;46:3590–3595. doi: 10.1021/jf980154m. DOI

Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI

Walsh S.E., Maillard J.Y., Russell A.D., Catrenich C.E., Charbonneau D.L., Bartolo R.G. Activity and mechanisms of action of selected biocidal agents on Gram-positive and negative bacteria. J. Appl. Microbiol. 2003;94:240–247. doi: 10.1046/j.1365-2672.2003.01825.x. PubMed DOI

Horváth G., Kovács K., Kocsis B., Kustos I. Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia. 2009;70:1645–1650. doi: 10.1365/s10337-009-1374-7. DOI

Di Pasqua R., Mamone G., Ferranti P., Ercolini D., Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 2010;10:1040–1049. PubMed

Lachowicz K.J., Jones G.P., Briggs D.R., Bienvenu F.E., Wan J., Wilcock A., Coventry M.J. The synergistic preservative effects of the essential oils of sweet basil (Ocimum basilicum L.) against acid-tolerant food microflora. Lett. Appl. Microbiol. 1998;26:209–214. doi: 10.1046/j.1472-765X.1998.00321.x. PubMed DOI

Moleyar V., Narasimham P. Antibacterial activity of essential oil components. Int. J. Food Microbiol. 1992;16:337–342. doi: 10.1016/0168-1605(92)90035-2. PubMed DOI

Mulyaningsih S., Sporer F., Zimmermann S., Reichling J., Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010;17:1061–1066. doi: 10.1016/j.phymed.2010.06.018. PubMed DOI

Bassolé I.H.N., Juliani H.R. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17:3989–4006. doi: 10.3390/molecules17043989. PubMed DOI PMC

Ntalli N.G., Ferrari F., Giannakou I., Menkissoglu-Spiroudi U. Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Manag. Sci. 2011;67:341–351. doi: 10.1002/ps.2070. PubMed DOI

Wanghen P.F., Chang S.T. Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresource Technol. 2005;96:813–818. PubMed

Larsen A.G., Knoechel S. Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. J. Appl. Microbiol. 1997;83:111–119. doi: 10.1046/j.1365-2672.1997.00196.x. PubMed DOI

Jayaprakasha G.K., Rao L.J.M. Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum. Cr. Rev. Food Sci. 2011;51:547–562. doi: 10.1080/10408391003699550. PubMed DOI

Bosca F., Miranda M.A. Photosensitizing drugs containing the benzophenone chromophore. J. Photochem. Photobiol. B Biol. 1998;43 doi: 10.1016/S1011-1344(98)00062-1. PubMed DOI

Ogunlesi M., Okiei W., Ofor E., Osibote A.E. Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. Afr. J. Biotechnol. 2009;8:7042–7050.

Zavala-Sanchez M.A., Perez-Gutierrez S., Perez-Gonzalez C., Sanchez-Saldivar D., Arias-Garcia L. Antidiarrhoeal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharm. Biol. 2002;40:263–268. doi: 10.1076/phbi.40.4.263.8465. DOI

Kobaisy M., Tellez M.R., Webber C.L., Dayan F.E., Schrader K.K., Wedge D.E. Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. J. Agric. Food Chem. 2001;49:3768–3771. doi: 10.1021/jf0101455. PubMed DOI

Grundy S.M., Denke M.A. Dietary influences on serum lipids and lipoproteins. J. Lipid Res. 1990;31:1149–1172. PubMed

Dilika F., Bremner P.D., Meyer J.J.M. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia. 2000;71:450–452. doi: 10.1016/S0367-326X(00)00150-7. PubMed DOI

Seidel V., Taylor P.W. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int. J. Antimicrob. Ag. 2004;23:613–619. doi: 10.1016/j.ijantimicag.2003.11.008. PubMed DOI

Anderson I.B., Mullen W.H., Meeker J.E., Khojasteh-Bakht S.C., Oishi S., Nelson S.D., Blanc P.D. Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann. Intern. Med. 1996;124:726–734. doi: 10.7326/0003-4819-124-8-199604150-00004. PubMed DOI

Woolf A. Essential oil poisoning. J. Toxicol. Clin. Toxicol. 1999;37:721–727. doi: 10.1081/CLT-100102450. PubMed DOI

Gordon W.P., Forte A.J., McMurtry R.J., Gal J., Nelson S.D. Hepatotoxicity and pulmonary toxicity of pennyroyal oil and its constituent terpenes in the mouse. Toxicol. Appl. Pharm. 1982;65:413–424. doi: 10.1016/0041-008X(82)90387-8. PubMed DOI

Zhou S., Koh H.L., Gao Y., Gong Z.Y., Lee E.J.D. Herbal bioactivation: The good, the bad and the ugly. Life Sci. 2004;74:935–968. doi: 10.1016/j.lfs.2003.09.035. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...