DNA barcoding, species-specific PCR and real-time PCR techniques for the identification of six Tribolium pests of stored products
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27352804
PubMed Central
PMC4926120
DOI
10.1038/srep28494
PII: srep28494
Knihovny.cz E-resources
- MeSH
- DNA Primers metabolism MeSH
- DNA chemistry isolation & purification metabolism MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Electron Transport Complex IV chemistry genetics MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- DNA Barcoding, Taxonomic * MeSH
- Tribolium classification genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Primers MeSH
- DNA MeSH
- Electron Transport Complex IV MeSH
Flour beetles of the genus Tribolium Macleay (Coleoptera: Tenebrionidae) are important stored product pests in China and worldwide. They are often found or are intercepted in grain depots, flour mills, and entry-exit ports, etc. Traditionally, Tribolium species are identified according to the morphological characteristics of the adult. However, it is almost impossible to rapidly identify adult fragments and non-adult stages based on external morphological characteristics. Molecular techniques for the rapid and accurate identification of Tribolium species are required, particularly for pest monitoring and the quarantine of stored products pests. Here, we establish DNA barcoding, species-specific PCR, and real-time PCR techniques for the identification of six stored-product pest Tribolium species including T. castaneum, T. confusum, T. destructor, T. madens, T. freemani and T. brevicornis. We detected the mitochondrial DNA cytochrome oxidase subunit I (COI) barcodes for Tribolium from 18 geographic populations and 101 individuals, built a Tribolium DNA barcode library, and designed species-specific primers and TaqMan probes for the above six Tribolium species. The three techniques were applied to identify Tribolium collected from stored samples and samples captured from quarantine ports. The results demonstrated that three techniques were all able to identify the six species of Tribolium both rapidly and accurately.
Academy of State Administration of Grain Beijing 100037 China
Chinese Academy of Inspection and Quarantine Beijing 100176 China
College of Plant Protection China Agricultural University Beijing 100193 China
Crop Research Institute Drnovská 507 161 06 Prague 6 Czech Republic
See more in PubMed
Nowaczyk K. et al.. Molecular techniques for detection of Tribolium confusum infestations in stored products. J. Econ. Entomol. 102, 1691–1695 (2009). PubMed
Lagisz M., Wilde K. E. & Wolff K. The development of PCR-based markers for molecular sex identification in the model insect species Tribolium castaneum. Entomol. Exp. Appl. 134, 50–59 (2010).
Stejskal V. & Hubert J. Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores. Ann. Agric. Environ. Med. 15, 29–35 (2008). PubMed
Angelini D. R. & Jockusch E. L. Relationships among pest flour beetles of the genus Tribolium (Tenebrionidae) inferred from multiple molecular markers. Mol. Phylogenet. Evol. 46, 127–141 (2008). PubMed PMC
Nakakita H. Rediscovery of Tribolium freemani Hinton: a stored product insect unexpected to entomologists for past 100 years. Jpn. Ag. Res. Q. 16, 239–245 (1983).
He P. H., Zhang T. et al.. Species of stored grain insects and mites trapped by corrugated board method on the surface of grain bulk in granary. J. Henan University of Technology. 36, 50–54 (2015).
Hagstrum D. & Subramanyam B. Stored-product Insect Resource. AACC Press. St. Paul. p. 509 (2009).
Stejskal V., Hubert J., Aulickyv R. & Kucerova Z. Over-view of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored. Prod. Res. 64, 122–132 (2015).
Hinton H. E. A synopsis of the genus Tribolium Magley, with some remarks on the evolution of its species-group (Coleoptera, Tenebrionidae). Bull. Entomol. Res. 39, 13–55 (1948). PubMed
Huang C. G., Hsu J. C., Haymer D. S., Lin G. C. & Wu W. J. Rapid identification of the Mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239–1246 (2009). PubMed PMC
Wang Y. J. et al.. DNA barcoding of five common stored product pest species of genus Cryptolestes (Coleoptera: Laemophloeidae). Bull. Entomol. Res. 104, 671–678 (2014). PubMed
Varadínová Z., Wang Y. J. & Li Z. H. COI barcode based species-specific primers for identification of five species of stored-product pests from genus Cryptolestes (Coleoptera: Laemophloeidae). Bull. Entomol. Res. 105, 202–209 (2015). PubMed
Zhang C. W., Xu L. P., Lu M., Liang X. & Li J. Rapid molecular identification of Tribolium destructor. Agric. Biotechnol. 4, 49–52 (2014).
Zhang H. S., Feng Z. J. & Cheng C. Molecular identification of T. castaneum and T. confusum based on PCR-RFLP analyses of 28S rRNA gene. Environ. Entomol. 36, 171–175 (2014). PubMed
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994). PubMed
Librado P. & Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009). PubMed
Tamura K. et al.. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011). PubMed PMC
Puillandre N., Lambert A., Brouillet S. & Achaz G. ABGD, automated barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012). PubMed
Meiklejohn K. A., Wallman J. F. & Dowton M. DNA-based identification of forensically important Australian Sarcophagidae (Diptera). Int. J. Legal Med. 125, 27–32 (2011). PubMed
Hebert P. D. N., Penton E. H., Burns J. M., Janzen D. H. & Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA. 101, 14812–14817 (2004). PubMed PMC