Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11-7082, parthenolide and dimethyl fumarate
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27353740
PubMed Central
PMC4926109
DOI
10.1038/srep28754
PII: srep28754
Knihovny.cz E-zdroje
- MeSH
- dimethyl fumarát farmakologie MeSH
- eryptóza účinky léků MeSH
- erytrocyty enzymologie MeSH
- glukosa-6-fosfátdehydrogenasa * antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- nitrily farmakologie MeSH
- seskviterpeny farmakologie MeSH
- sulfony farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-(4-methylphenylsulfonyl)-2-propenenitrile MeSH Prohlížeč
- dimethyl fumarát MeSH
- glukosa-6-fosfátdehydrogenasa * MeSH
- nitrily MeSH
- parthenolide MeSH Prohlížeč
- seskviterpeny MeSH
- sulfony MeSH
In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11-7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11-7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11-7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach "Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target" (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity.
Department of Dermatology; Eberhard Karls University Tübingen Germany
Institute of Physiology 2 Keplerstr 15 Eberhard Karls University of Tübingen 72074 Tübingen Germany
Laboratory of Biophysics Saarland University Campus A2 4 66123 Saarbrücken Germany
Zobrazit více v PubMed
Li D. et al.. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm 24, 81–90, doi: 10.1089/cbr.2008.0494 (2009). PubMed DOI
Zuluaga L. et al.. Dehydroepiandrosterone effect on Plasmodium falciparum and its interaction with antimalarial drugs. Exp Parasitol 133, 114–120, doi: 10.1016/j.exppara.2012.11.002 (2013). PubMed DOI
Gordon G., Mackow M. C. & Levy H. R. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch Biochem Biophys 318, 25–29, doi: 10.1006/abbi.1995.1199 (1995). PubMed DOI
Shin E. S. et al.. Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme. Bioorg Med. Chem. 16, 3580–3586, doi: 10.1016/j.bmc.2008.02.030 (2008). PubMed DOI
Gupte R. S. et al.. Upregulation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase activity increases oxidative stress in failing human heart. J. Card Fail 13, 497–506, doi: 10.1016/j.cardfail.2007.04.003 (2007). PubMed DOI
Cordeiro A. T., Thiemann O. H. & Michels P. A. Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites. Bioorg Med. Chem. 17, 2483–2489, doi: 10.1016/j.bmc.2009.01.068 (2009). PubMed DOI
Kirsch M. et al.. A mechanism of efficient G6PD inhibition by a molecular clip. Angew Chem. Int. Ed. Engl. 48, 2886–2890, doi: 10.1002/anie.200806175 (2009). PubMed DOI
Schwartz A. G. & Pashko L. L. Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Res. Rev. 3, 171–187, doi: 10.1016/j.arr.2003.05.001 (2004). PubMed DOI
Serpillon S. et al.. Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am. J. Physiol Heart Circ. Physiol 297, H153–162, doi: 10.1152/ajpheart.01142.2008 (2009). PubMed DOI PMC
Carnicer R., Crabtree M. J., Sivakumaran V., Casadei B. & Kass D. A. Nitric oxide synthases in heart failure. Antioxid Redox Signal 18, 1078–1099, doi: 10.1089/ars.2012.4824 (2013). PubMed DOI PMC
Hu T. et al.. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer 13, 251, doi: 10.1186/1471-2407-13-251 (2013). PubMed DOI PMC
Watanabe T. et al.. Dehydroepiandrosterone-enhanced dual specificity protein phosphatase (DDSP) prevents diet-induced and genetic obesity. Biochem. Biophys Res. Commun 468, 196–201, doi: 10.1016/j.bbrc.2015.10.131 (2015). PubMed DOI
Niort G., Boccuzzi G., Brignardello E., Bonino L. & Bosia A. Effect of dehydroepiandrosterone on human erythrocytes redox metabolism: inhibition of glucose-6-phosphate dehydrogenase activity in vivo and in vitro. J. Steroid Biochem. 23, 657–661 (1985). PubMed
Ghashghaeinia M., Wieder T. & Duszenko M. in Role of Oxidative Stress in Chronic Diseases (ed. dichi I. et al..) Ch. 4.12, 421–478 (CRC Press, 2014).
Ghashghaeinia M. et al.. Targeting glutathione by dimethylfumarate protects against experimental malaria by enhancing erythrocyte cell membrane scrambling. Am. J. Physiol Cell Physiol 299, C791–804, doi: 10.1152/ajpcell.00014.2010 (2010). PubMed DOI
Ghashghaeinia M. et al.. The NFkB pathway inhibitors Bay 11–7082 and parthenolide induce programmed cell death in anucleated Erythrocytes. Cell Physiol Biochem. 27, 45–54, doi: 10.1159/000325204 (2011). PubMed DOI
Ogiso T., Kurobe M., Masuda H. & Kato Y. Effect of drugs on human erythrocytes. II. A possible mechanism of drug-induced hemolysis. Chem. Pharm. Bull (Tokyo) 25, 1078–1088 (1977). PubMed
Rostami-Yazdi M., Clement B., Schmidt T. J., Schinor D. & Mrowietz U. Detection of metabolites of fumaric acid esters in human urine: implications for their mode of action. J Invest Dermatol 129, 231–234, doi: 10.1038/jid.2008.197 (2009). PubMed DOI
Ghashghaeinia M. et al.. Potential roles of the NFkappaB and glutathione pathways in mature human erythrocytes. Cell Mol. Biol. Lett. 17, 11–20, doi: 10.2478/s11658-011-0032-x (2012). PubMed DOI PMC
Schmidt T. J., Ak M. & Mrowietz U. Reactivity of dimethyl fumarate and methylhydrogen fumarate towards glutathione and N-acetyl-L-cysteine–preparation of S-substituted thiosuccinic acid esters. Bioorg Med. Chem. 15, 333–342, doi: 10.1016/j.bmc.2006.09.053 (2007). PubMed DOI
Giustarini D., Dalle-Donne I., Milzani A., Fanti P. & Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide. Nat. Protoc. 8, 1660–1669, doi: 10.1038/nprot.2013.095 (2013). PubMed DOI
Eggleston L. V. & Krebs H. A. Regulation of the pentose phosphate cycle. Biochem. J. 138, 425–435 (1974). PubMed PMC
Marks P. A. & Banks J. Inhibition of Mammalian Glucose-6-Phosphate Dehydrogenase by Steroids. Proc. Natl. Acad. Sci. USA 46, 447–452 (1960). PubMed PMC
Pai E. F. & Schulz G. E. The catalytic mechanism of glutathione reductase as derived from x-ray diffraction analyses of reaction intermediates. J. Biol. Chem. 258, 1752–1757 (1983). PubMed
Ghoreschi K. et al.. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303, doi: 10.1084/jem.20100977 (2011). PubMed DOI PMC
Ghantous A., Sinjab A., Herceg Z. & Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov. Today 18, 894–905, doi: 10.1016/j.drudis.2013.05.005 (2013). PubMed DOI
Guzman M. L. et al.. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001). PubMed
Pei S. et al.. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 288, 33542–33558, doi: doi: 10.1074/jbc.M113.511170 (2013). PubMed DOI PMC
Garcia M. G. et al.. Inhibition of NF-kappaB activity by BAY 11–7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res. 29, 1425–1434, doi: 10.1016/j.leukres.2005.05.004 (2005). PubMed DOI
Kempe D. S. et al.. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 20, 368–370, doi: 10.1096/fj.05-4872fje (2006). PubMed DOI
Ghashghaeinia M. et al.. The impact of erythrocyte age on eryptosis. Br. J. Haematol 157, 606–614, doi: 10.1111/j.1365-2141.2012.09100.x (2012). PubMed DOI
Gupte R. S. et al.. Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radic Biol. Med. 47, 219–228, doi: 10.1016/j.freeradbiomed.2009.01.028 (2009). PubMed DOI PMC
Tsai K. J. et al.. Impaired production of nitric oxide, superoxide, and hydrogen peroxide in glucose 6-phosphate-dehydrogenase-deficient granulocytes. FEBS Lett. 436, 411–414 (1998). PubMed
Heymes C. et al.. Increased myocardial NADPH oxidase activity in human heart failure. J. Am. Coll Cardiol 41, 2164–2171 (2003). PubMed
Hecker P. A., Leopold J. A., Gupte S. A., Recchia F. A. & Stanley W. C. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am. J. Physiol Heart Circ. Physiol 304, H491–500, doi: 10.1152/ajpheart.00721.2012 (2013). PubMed DOI PMC
Lopez-Marure R., Contreras P. G. & Dillon J. S. Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol 660, 268–274, doi: 10.1016/j.ejphar.2011.03.040 (2011). PubMed DOI
Chen L. et al.. BAY 11–7082, a nuclear factor-kappaB inhibitor, induces apoptosis and S phase arrest in gastric cancer cells. J. Gastroenterol 49, 864–874, doi: 10.1007/s00535-013-0848-4 (2014). PubMed DOI
Kawasaki B. T. et al.. Effects of the sesquiterpene lactone parthenolide on prostate tumor-initiating cells: An integrated molecular profiling approach. Prostate 69, 827–837, doi: 10.1002/pros.20931 (2009). PubMed DOI PMC
Tsubaki M. et al.. Dimethyl fumarate induces apoptosis of hematopoietic tumor cells via inhibition of NF-kappaB nuclear translocation and down-regulation of Bcl-xL and XIAP. Biomed. Pharmacother 68, 999–1005, doi: 10.1016/j.biopha.2014.09.009 (2014). PubMed DOI
Olivier M., Hollstein M. & Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2, a001008, doi: 10.1101/cshperspect.a001008 (2010). PubMed DOI PMC
Jiang P. et al.. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13, 310–316, doi: 10.1038/ncb2172 (2011). PubMed DOI PMC
Guzman M. L. et al.. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169, doi: 10.1182/blood-2004-10-4135 (2005). PubMed DOI PMC
Seidel P. et al.. Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J. Physiol Lung. Cell Mol. Physiol 297, L326–339, doi: 10.1152/ajplung.90624.2008 (2009). PubMed DOI
Dieni C. A. & Storey K. B. Regulation of glucose-6-phosphate dehydrogenase by reversible phosphorylation in liver of a freeze tolerant frog. J. Comp. Physiol B. 180, 1133–1142, doi: 10.1007/s00360-010-0487-5 (2010). PubMed DOI
Zhang Z., Apse K., Pang J. & Stanton R. C. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J. Biol. Chem. 275, 40042–40047, doi: 10.1074/jbc.M007505200 (2000). PubMed DOI
Tateishi N., Higashi T., Naruse A., Nakashima K. & Shiozaki H. Rat liver glutathione: possible role as a reservoir of cysteine. J. Nutr. 107, 51–60 (1977). PubMed
Giustarini D., Milzani A., Dalle-Donne I. & Rossi R. Red blood cells as a physiological source of glutathione for extracellular fluids. Blood Cells Mol. Dis. 40, 174–179, doi: 10.1016/j.bcmd.2007.09.001 (2008). PubMed DOI
Wood K. C. et al.. Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb. Vasc. Biol. 33, 1861–1871, doi: 10.1161/ATVBAHA.112.301068 (2013). PubMed DOI PMC
Clancy R. M., Levartovsky D., Leszczynska-Piziak J., Yegudin J. & Abramson S. B. Nitric oxide reacts with intracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. Proc. Natl. Acad. Sci. USA 91, 3680–3684 (1994). PubMed PMC
Becker K., Gui M. & Schirmer R. H. Inhibition of human glutathione reductase by S-nitrosoglutathione. Eur. J. Biochem. 234, 472–478 (1995). PubMed
Lee J., Rhee M. H., Kim E. & Cho J. Y. BAY 11–7082 is a broad-spectrum inhibitor with anti-inflammatory activity against multiple targets. Mediators Inflamm 2012, 416036, doi: 10.1155/2012/416036 (2012). PubMed DOI PMC
Sheehan M. et al.. Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Mol. Pharmacol 61, 953–963 (2002). PubMed
Wilms H. et al.. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7, 30, doi: 10.1186/1742-2094-7-30 (2010). PubMed DOI PMC
Leopold J. A., Zhang Y. Y., Scribner A. W., Stanton R. C. & Loscalzo J. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide. Arterioscler Thromb. Vasc. Biol. 23, 411–417, doi: 10.1161/01.ATV.0000056744.26901.BA (2003). PubMed DOI
Bozdech Z. & Ginsburg H. Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes. Malr. J. 4, 17, doi: 10.1186/1475-2875-4-17 (2005). PubMed DOI PMC
Jiang P., Du W. & Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 5, 592–602, doi: 10.1007/s13238-014-0082-8 (2014). PubMed DOI PMC
Backos D. S., Franklin C. C. & Reigan P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmacol. 83, 1005–1012, doi: 10.1016/j.bcp.2011.11.016 (2012). PubMed DOI
Li F. & Sethi G. Targeting transcription factor NF-kappaB to overcome chemoresistance and radioresistance in cancer therapy. Biochim. Biophys Acta. 1805, 167–180, doi: 10.1016/j.bbcan.2010.01.002 (2010). PubMed DOI
Findeisen H. M. et al.. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity. Obesity (Silver Spring) 19, 2429–2432, doi: 10.1038/oby.2011.298 (2011). PubMed DOI
Lang P. A. et al.. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118, 1233–1243, doi: 10.1242/jcs.01730 (2005). PubMed DOI
Giustarini D., Dalle-Donne I., Milzani A. & Rossi R. Detection of glutathione in whole blood after stabilization with N-ethylmaleimide. Anal. Biochem. 415, 81–83, doi: 10.1016/j.ab.2011.04.013 (2011). PubMed DOI
Di Iorio E. E. Preparation of derivatives of ferrous and ferric hemoglobin. Methods Enzymol. 76, 57–72 (1981). PubMed
Beutler E. et al.. International Committee for Standardization in Haematology: recommended methods for red-cell enzyme analysis. Br. J. Haematol 35, 331–340 (1977). PubMed
The specific PKC-α inhibitor chelerythrine blunts costunolide-induced eryptosis