Preparation and characterization of konjac glucomannan (KGM) and deacetylated KGM (Da-KGM) obtained by sonication

. 2022 Aug 15 ; 102 (10) : 4333-4344. [epub] 20220204

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35043977

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007370 Biodiversity
LM2018099 CENAKVA
2019CFA011 Hubei Provincial Natural Science Foundation for Innovative Group

BACKGROUND: Konjac glucomannan (KGM) has been widely applied in the food industry as a thickening and gelation agent because of its unique colloidal properties of viscosity enhancement and gelling ability. The current study aimed to prepare and characterize KGM and deacetylated KGM (Da-KGM) samples obtained by sonication in neutral and alkali ethanol-water solutions. RESULTS: The results showed that the deacetylation degree (DD) of Da-KGM increased exponentially with alkali concentration. Fourier transform infrared spectrometry further confirmed the deacetylation reaction through the dramatic decrease in the acetyl group band at 1740 cm-1 . Besides, the high similarity among the tested groups in terms of X-ray diffraction (XRD) spectra implied a similar crystalline structure, while differential scanning calorimetry (DSC) curves revealed that the water binding capacity and decomposition temperature of KGM changed slightly with alkali and sonication treatment. The rheological profiles indicated that apparent viscosity (η0 ) of sonicated KGM samples was unchanged except for the T60 group (60 min sonication treatment). Particularly, ultrasonic treatment under high alkaline conditions (0.10 mol L-1 NaOH) was noted to promote the deacetylation reaction, and the obtained samples showed decreased apparent viscosity and weakened the gelation process in aqueous solution. Partial correction analysis indicated that alkali rather than ultrasonic treatment resulted in the change of DD and η0 in Da-KGM. Moreover, sonication contributed to off-white color by reducing the browning caused by alkali in Da-KGM products. CONCLUSION: Ultrasound-mediated heterogeneous deacetylation reaction is a feasible way to prepare Da-KGM samples with lightened browning and controllable DD. © 2022 Society of Chemical Industry.

Zobrazit více v PubMed

Nishinari K, Williams PA and Phillips GO, Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll 6:199-222 (1992).

Behera SS and Ray RC, Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol 92:942-956 (2016).

Jin W, Xu W, Li Z, Li J, Zhou B, Zhang C et al., Degraded konjac glucomannan by γ-ray irradiation assisted with ethanol: preparation and characterization. Food Hydrocoll 36:85-92 (2014).

Shah BR, Li B, Wang L, Liu S, Li Y, Wei X et al., Health benefits of konjac glucomannan with special focus on diabetes. Bioact Carbohydr Diet Fibre 5:179-187 (2015).

Zhu F, Modifications of konjac glucomannan for diverse applications. Food Chem 256:419-426 (2018).

Ratcliffe I, Williams PA, Viebke C and Meadows J, Physicochemical characterization of konjac glucomannan. Biomacromolecules 6:1977-1986 (2005).

Gao S and Nishinari K, Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules 5:175-185 (2004).

Zhu B, Xin C, Li J and Li B, Ultrasonic degradation of konjac glucomannan and the effect of freezing combined with alkali treatment on their rheological profiles. Molecules 24:1860 (2019).

Li J, Ye T, Wu X, Chen J, Wang S, Lin L et al., Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocoll 40:9-15 (2014).

Cintas P and Luche JL, Green chemistry: the sonochemical approach. Green Chem 1:115-125 (1999).

Sancheti SV and Gogate PR, A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason Sonochem 36:527-543 (2017).

Cheng LH, Halawiah HN, Lai BN, Yong HM and Ang SL, Ultrasound mediated acid hydrolysis of konjac glucomannan. Int Food Res J 17:1043-1050 (2010).

Li J, Li B, Geng P, Song AX and Wu JY, Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll 70:14-19 (2017).

Yin JY, Ma LY, Siu KC and Wu JY, Effects of ultrasonication on the conformational, microstructural, and antioxidant properties of konjac glucomannan. Appl Sci 9:461 (2019).

Jiang M, Li H, Shi JS and Xu ZH, Depolymerized konjac glucomannan: preparation and application in health care. J Zhejiang Univ - Sci B 19:505-514 (2018).

Brunchi C-E, Morariu S and Bercea M, Impact of ethanol addition on the behaviour of xanthan gum in aqueous media. Food Hydrocoll 120:106928 (2021).

Yang Z, Yang H and Yang H, Characterisation of rheology and microstructures of κ-carrageenan in ethanol-water mixtures. Food Res Int 107:738-746 (2018).

Cheung Y-C, Liu X-X, Wang W-Q and Wu J-Y, Ultrasonic disruption of fungal mycelia for efficient recovery of polysaccharide-protein complexes from viscous fermentation broth of a medicinal fungus. Ultrason Sonochem 22:243-248 (2015).

Pan Z, He K and Wang Y, Deacetylation of konjac glucomannan by mechanochemical treatment. J Appl Polym Sci 108:1566-1573 (2008).

Pan T, Peng S, Xu Z, Xiong B, Wen C, Yao M et al., Synergetic degradation of konjac glucomannan by γ-ray irradiation and hydrogen peroxide. Carbohydr Polym 93:761-767 (2013).

Lin WM, Ni YS, Wang L, Liu DY, Wu CH and Pang J, Physicochemical properties of degraded konjac glucomannan prepared by laser assisted with hydrogen peroxide. Int J Biol Macromol 129:78-83 (2019).

Aprianita A, Vasiljevic T, Bannikova A and Kasapis S, Physicochemical properties of wheat-canna and wheat-konjac composite flours. J Food Sci Technol 51:1784-1794 (2014).

Endress H-U and Fischer J, Fibres and fibre blends for individual needs: a physiological and technological approach, in Advanced Dietary Fibre Technology, ed. by BV MC and Prosky L. Wiley, Hoboken, NJ, pp. 284-297 (2000).

Honda S, Ishida R, Hidaka K and Masuda T, Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Sci Technol Res 25:123-129 (2019).

Schmitz GE, Sullivan ML and Hatfield RD, Three polyphenol oxidases from red clover (Trifolium pratense) differ in enzymatic activities and activation properties. J Agric Food Chem 56:272-280 (2008).

Xu Z, Sun Y, Yang Y, Ding J and Pang J, Effect of γ-irradiation on some physiochemical properties of konjac glucomannan. Carbohydr Polym 70:444-450 (2007).

Chen J, Liu C, Chen Y, Chen Y and Chang PR, Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74:946-952 (2008).

Lu J, Wang X and Xiao C, Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr Polym 73:427-437 (2008).

Ye W, Yan B, Pang J, Fan D, Huang J, Zhou W et al., A study of the synergistic interaction of konjac glucomannan/curdlan blend systems under alkaline conditions. Materials 12:3543 (2019).

Nguyen TA, Do TT, Nguyen TD, Pham LD and Nguyen VD, Isolation and characteristics of polysaccharide from Amorphophallus corrugatus in Vietnam. Carbohydr Polym 84:64-68 (2011).

Bhandari PN, Singhal RS and Kale DD, Effect of succinylation on the rheological profile of starch pastes. Carbohydr Polym 47:365-371 (2002).

Kasapis S, Definition and applications of the network glass transition temperature. Food Hydrocoll 20:218-228 (2006).

Kasapis S, Mitchell J, Abeysekera R and MacNaughtan W, Rubber-to-glass transitions in high sugar/biopolymer mixtures. Trends Food Sci Technol 15:298-304 (2004).

Kasapis S and Al-Marhoobi IM, Bridging the divide between the high- and low-solid analyses in the gelatin/kappa-carrageenan mixture. Biomacromolecules 6:14-23 (2005).

Michon C, Cuvelier G and Launay B, Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol Acta 32:94-103 (1993).

Jin W, Mei T, Wang Y, Xu W, Li J, Zhou B et al., Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohydr Polym 99:270-277 (2014).

Welti-Chanes J, Serna-Saldivar S, Campanella O and Tejada-Ortigoza V, Science and Technology of Fibers in Food Systems. Springer, Berlin (2020).

Yang Z, Yang H and Yang H, Effects of sucrose addition on the rheology and microstructure of κ-carrageenan gel. Food Hydrocoll 75:164-173 (2018).

Yang D, Gao S and Yang H, Effects of sucrose addition on the rheology and structure of iota-carrageenan. Food Hydrocoll 99:105317 (2020).

Sow LC and Yang H, Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin. Food Hydrocoll 45:72-82 (2015).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...