Impact of Non-Invasively Induced Motor Deficits on Tibial Cortical Properties in Mutant Lurcher Mice
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27387489
PubMed Central
PMC4936670
DOI
10.1371/journal.pone.0158877
PII: PONE-D-16-12870
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- bludiště - učení * MeSH
- diafýzy MeSH
- druhová specificita MeSH
- konfokální mikroskopie MeSH
- křížení genetické MeSH
- mutace MeSH
- myši - mutanty neurologické * MeSH
- myši MeSH
- počítačové zpracování obrazu MeSH
- tibie fyziologie MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
It has been shown that Lurcher mutant mice have significantly altered motor abilities, regarding their motor coordination and muscular strength because of olivorecebellar degeneration. We assessed the response of the cross-sectional geometry and lacuno-canalicular network properties of the tibial mid-diaphyseal cortical bone to motor differences between Lurcher and wild-type (WT) male mice from the B6CBA strain. The first data set used in the cross-sectional geometry analysis consists of 16 mice of 4 months of age and 32 mice of 9 months of age. The second data set used in the lacunar-canalicular network analysis consists of 10 mice of 4 months of age. We compared two cross-sectional geometry and four lacunar-canalicular properties by I-region using the maximum and minimum second moment of area and anatomical orientation as well as H-regions using histological differences within a cross section. We identified inconsistent differences in the studied cross-sectional geometry properties between Lurcher and WT mice. The biggest significant difference between Lurcher and WT mice is found in the number of canaliculi, whereas in the other studied properties are only limited. Lurcher mice exhibit an increased number of canaliculi (p < 0.01) in all studied regions compared with the WT controls. The number of canaliculi is also negatively correlated with the distance from the centroid in the Lurcher and positively correlated in the WT mice. When the Lurcher and WT sample is pooled, the number of canaliculi and lacunar volume is increased in the posterior Imax region, and in addition, midcortical H-region exhibit lower number of canaliculi, lacuna to lacuna distance and increased lacunar volume. Our results indicate, that the importance of precise sample selection within cross sections in future studies is highlighted because of the histological heterogeneity of lacunar-canalicular network properties within the I-region and H-region in the mouse cortical bone.
Department of Pathophysiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Zobrazit více v PubMed
Roux W. Der kampf der teile im organismus. Leipzig: Engelmann; 1881.
Burr DB, Robling AG, Turner CH. Effects of Biomechanical Stress on Bones in Animals. Bone. 2002;30:781–6. PubMed
Lanyon LE, Goodship AE, Pye CJ, MacFie JH. Mechanically adaptive bone remodelling. J Biomech. 1982;15(3):141–54. PubMed
Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anat Rec. 1987;219(1):1–9. PubMed
Ruff CB, Trinkaus E, Walker A, Larsen CS. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol. 1993;91(1):21–53. PubMed
Trinkaus E, Stringer CB, Ruff CB, Hennessy RJ, Roberts MB, Parfitt SA. Diaphyseal cross-sectional geometry of the Boxgrove 1 Middle Pleistocene human tibia. J Hum Evol. 1999;37(1):1–25. PubMed
Skedros JG, Hunt KJ, Bloebaum RD. Relationships of loading history and structural and material characteristics of bone: Development of the mule deer calcaneus. J Morphol. 2004;259(3):281–307. PubMed
Leroux A, Fung J, Barbeau H. Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture. 2002;15(1):64–74. PubMed
Hora M, Sladek V. Influence of lower limb configuration on walking cost in Late Pleistocene humans. J Hum Evol. 2014;67:19–32. 10.1016/j.jhevol.2013.09.011 PubMed DOI
Steinberg ME, Trueta J. Effects of activity on bone growth and development in the rat. Clin Orthop Relat Res. 1981;156:52–60. PubMed
Ruff CB, Hayes WC. Cross‐sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation. Am J Phys Anthropol. 1983;60(3):359–81. PubMed
O'Neill MC, Ruff CB. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. J Hum Evol. 2004;47(4):221–35. PubMed
Sládek V, Berner M, Sailer R. Mobility in Central European Late Eneolithic and Early Bronze Age: femoral cross-sectional geometry. Am J Phys Anthropol. 2006;130(3):320–32. PubMed
Sládek V, Berner M, Sosna D, Sailer R. Human manipulative behavior in the Central European Late Eneolithic and Early Bronze Age: Humeral bilateral asymmetry. Am J Phys Anthropol. 2007;133(1):669–81. PubMed
Hamrick MW, McPherron AC, Lovejoy CO, Hudson J. Femoral morphology and cross-sectional geometry of adult myostatin-deficient mice. Bone. 2000;27:343–9. PubMed
Brodt MD, Ellis CB, Silva MJ. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res. 1999;14(12):2159–66. PubMed
Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405(6787):704–6. PubMed
Hirose S, Li M, Kojima T, Henrique P, de Freitas L, Ubaidus S, et al. A histological assessment on the distribution of the osteocytic lacunar canalicular system using silver staining. J Bone Miner Res. 2007;25:374–82. PubMed
Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J. Osteocyte morphology in fibula and calvaria—Is there a role for mechanosensing? Bone. 2008;43:452–8. 10.1016/j.bone.2008.01.030 PubMed DOI
Hai Q, Laleh A, Pajevix PD, Dusevich V, Jahn K, Kato S, et al. Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. J Bone Miner Res. 2012;27(5):1018–29. 10.1002/jbmr.1567 PubMed DOI PMC
van Hove RP, Nolte PA, Vatsa A, Semeins CM, Salmon PL, Smit TH, et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density—Is there a role for mechanosensing? Bone. 2009;45(2):321–9. 10.1016/j.bone.2009.04.238 PubMed DOI
Britz HM, Carter Y, Jokihaara J, Leppänen OV, Järvinen TLN, Belev G, et al. Prolonged unloading in growing rats reduces cortical osteocyte lacunar density and volume in the distal tibia. Bone. 2012;51(5):913–19. 10.1016/j.bone.2012.08.112 PubMed DOI
Carter Y, Thomas CDL, Clement JG, Peele AG, Hannah K, Cooper DML. Variation in osteocyte lacunar morphology and density in the human femur—a synchrotron radiation micro-CT study. Bone. 2013;52(1):126–32. 10.1016/j.bone.2012.09.010 PubMed DOI
Ruff CB. Variation in human body size and shape. Anu Rev Anthropol. 2002;31:211–32.
Polk JD, Demes B, Jungers WL, Biknevicius AR, Heinrich RE, Runestad JA. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique? J Hum Evol. 2000;39(3):297–325. PubMed
Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacunocanalicular network. FASEB J. 1999;13:101–12. PubMed
Skedros JG, Hunt KJ, Hughes PE, Winet H. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat Rec A Discov Mol Cell Evol Biol. 2003;273(1)(1):609–29. PubMed
Rubin CT, Lanyon L. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1984;66(3):397–402. PubMed
Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–54. PubMed
Pearson OM, Lieberman DE. The aging of Wolff's "law": Ontogeny and responses to mechanical loading in cortical bone. Yearb Phys Anthropol. 2004;47:63–99. PubMed
Phillips RJS. Lurcher, a new gene in linkage group XI of the house mouse. J Genet. 1960;57:35–42.
Zuo J, Philip L, Jager PLD, Takahashi KA, Jiang W, Linden DJ, et al. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature. 1997;388:769–73. PubMed
Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death. Brain Res. 1982;250(2):358–62. PubMed
Caddy KWT, Biscoe TJ. The number of Purkinje cells and olive neurones in the normal and lurcher mutant mouse. Brain Res. 1976;111:396–98. PubMed
Porras-García E, Cendelin J, Domínguez-del-Toro E, Vozeh F, Delgado-García JM. Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci. 2005;21(4):979–88. PubMed
Hilber P, Caston J. Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience. 2001;102(3):615–23. PubMed
Le Marec N, Caston J, Lalonde R. Impaired motor skills on static and mobile beams in lurcher mutant mice. Exp Brain Res. 1997;116(1):131–8. PubMed
Lalonde R, Joyal CC, Thifault S. Beam sensorimotor learning and habituation to motor activity in lurcher mutant mice. Behav Brain Res. 1996;74(1–2):213–16. PubMed
Fortier PA, Smith AM, Rossignol S. Locomotor deficits in the mutant mouse, Lurcher. Exp Brain Res. 1987;66(2):271–86. PubMed
Thullier F, Lalonde R, Cousin X, Lestienne F. Neurobehavioral evaluation of lurcher mutant mice during ontogeny. Dev Brain Res. 1997;100(1):22–8. PubMed
Cendelin J, Voller J, Vozeh F. Ataxic gait analysis in a mouse model of the olivocerebellar degeneration. Behav Brain Res. 2010;210(1):8–15. 10.1016/j.bbr.2010.01.035 PubMed DOI
Krizkova A, Vozeh F. Development of early motor learning and topical motor skills in a model of cerebellar degeneration. Behav Brain Res. 2004;150(1–2):65–72. PubMed
Hartmann N, Martrette J-M, Westphal A. Influence of the Lurcher mutation on myosin heavy chain expression in skeletal and cardiac muscles. J Cell Biochem. 2001;81(S36):222–31. PubMed
Huiskes R. On the modelling of long bones in structural analyses. J Biomech. 1982;15(1):65–9. PubMed
Stout S, Skedros JG. Interpreting Load History in Limb-Bone Diaphyses In: Crowder C, Stout S, editors. Bone Histology: An Anthropological Perspective: CRC Press; 2011. p. 153–220.
Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. 10.1002/jbmr.320 PubMed DOI PMC
Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90. 10.1016/j.bone.2012.10.013 PubMed DOI
Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23(5):399–407. PubMed
Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T. The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone. 2013;52(1):189–96. 10.1016/j.bone.2012.09.033 PubMed DOI
Sugawara Y, Kamioka H, Honjo T, Tezuka K-i, Takano-Yamamoto T. Three-dimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone. 2005;36(5):877–83. PubMed
Sharma D, Ciani C, Marin PAR, Levy JD, Doty SB, Fritton SP. Alterations in the osteocyte lacunar–canalicular microenvironment due to estrogen deficiency. Bone. 2012;51(3):488–97. 10.1016/j.bone.2012.05.014 PubMed DOI PMC
Mader KS, Schneider P, Müller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone. 2013;57(1):142–54. 10.1016/j.bone.2013.06.026 PubMed DOI
Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum. 2015:1–10. PubMed
Ciani C, Doty SB, Fritton SP. An effective histological staining process to visualize bone intersticial fluid space using confocal microscopy. Bone. 2009;44:1015–17. 10.1016/j.bone.2009.01.376 PubMed DOI PMC
Abràmoff MD, Magalhães PJ, Ram SJ . Image processing with ImageJ. Biophotonics Int. 2004;11(7):36–43.
Ruff CB. Moment Macro for NIH Image and ImageJ. 2006.
Jindrová A, Tuma J, Sládek V. Intra-observer error of mouse long bone cross section digitization. Folia Zool. 2012;61(3–4):340–9.
Ruff CB. Biomechanical analyses of archaeological human skeletons In: Katzenberg MA, Saunders SR, editors. Biological Anthropology of the Human Skeleton, 2nd ed. Hoboken: John Wiley & Sons; 2007. p. 183–206.
Ruff CB. Body size, body shape, and long bone strength in modern humans. J Hum Evol. 2000;38(2):269–90. PubMed
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. 10.1038/nmeth.2019 PubMed DOI PMC
Longair MH, Baker DA, Armstrong JD. Simple Neurite Tracer: Open Source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics. 2011. PubMed
Merzin M. Applying stereological method in radiology. Volume measurement (Bachelor's thesis). Tartu: University of Tartu;. 2008.
Cendelin J, Tuma J, Korelusova I, Vozeh F. The effect of genetic background on behavioral manifestation of Grid2 Lc mutation. Behav Brain Res. 2014;271:218–27. 10.1016/j.bbr.2014.06.023 PubMed DOI
Price C, Herman BC, Lufkin T, Goldman HM, Jepsen KJ. Genetic variation in bone growth patterns defines adult mouse bone fragility. J Bone Miner Res. 2005;20(11):1983–91. PubMed
Halloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res. 2002;17(6):1044–50. PubMed
Jerome C, Hoch B. 5—Skeletal System In: Treuting PM, Dintzis SM, editors. Comparative Anatomy and Histology. San Diego: Academic Press; 2012. p. 53–70.
Frost HM. Review article mechanical determinants of bone modeling. Metab Bone Dis Relat Res. 1982;4(4):217–29. PubMed
De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone. 2005;37(6):810–18. PubMed
Simske S, Guerra K, Greenberg A, Luttges M. The physical and mechanical effects of suspension-induced osteopenia on mouse long bones. J Biomech. 1992;25(5):489–99. PubMed
Kodama Y, Dimai H, Wergedal J, Sheng M, Malpe R, Kutilek S, et al. Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading. Bone. 1999;25(2):183–90. PubMed
Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, et al. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone. 2014;64:39–46. 10.1016/j.bone.2014.03.044 PubMed DOI PMC
Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42:606–15. 10.1016/j.bone.2007.12.224 PubMed DOI PMC
Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J. Osteocyte lacunae tissue strain in cortical bone. J Biomech. 2006;39(9):1735–43. PubMed PMC
Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28(2):145–9. PubMed
Hilber P, Lorivel T, Delarue C, Caston J. Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 2004;1003(1):108–12. PubMed
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274 PubMed PMC
Lurcher Mouse as a Model of Cerebellar Syndromes