Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)
Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article, Review
Grant support
G12 MD007595
NIMHD NIH HHS - United States
R01 AI117211
NIAID NIH HHS - United States
PubMed
27429642
PubMed Central
PMC4946132
DOI
10.1186/s13017-016-0089-y
PII: 89
Knihovny.cz E-resources
- MeSH
- Drug Resistance, Microbial MeSH
- Anti-Infective Agents pharmacology MeSH
- Humans MeSH
- International Cooperation * MeSH
- Microbial Sensitivity Tests MeSH
- Intraabdominal Infections * diagnosis drug therapy microbiology MeSH
- Prognosis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Anti-Infective Agents MeSH
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs.
3rd Department of General Surgery Jagiellonian University Medical College Krakow Poland
6th Department of Internal Medicine Hygeia General Hospital Athens Greece
Abdominal Center University Hospital Meilahti Helsinki Finland
Academic Department of Surgery Queen Elizabeth Hospital Birmingham UK
Anesthesia and Intensive Care Unit AORN dei Colli Vincenzo Monaldi Hospital Naples Italy
Anesthesiology and Intensive Care Unit Sant'Orsola University Hospital Bologna Italy
APHP medical and infectious diseases ICU Bichat Hospital Paris France
Biomedical Research Center Qatar University Doha Qatar
Center for Global Health Mito Kyodo General Hospital University of Tsukuba Mito Ibaraki Japan
Center of Anti Infective Research and Development Hartford CT USA
Clinic for Emergency Surgery Medical Faculty University of Belgrade Belgrade Serbia
Department for Traumatology and Orthopedic Surgery Cologne Merheim Medical Center Cologne Germany
Department General Surgery Kipshidze Central University Hospital Tbilisi Georgia
Department of Clinical Pharmacology School of Medicine University of Botswana Gaborone Botswana
Department of Critical Care Medicine Ghent University Hospital Ghent Belgium
Department of Emergency Surgery and Critical Care Centro Medico Imbanaco Cali Colombia
Department of Emergency Surgery City Hospital Mozyr Belarus
Department of General and Emergency Surgery Riga East University Hospital 'Gailezers' Riga Latvia
Department of General and Thoracic Surgery University Hospital Giessen Giessen Germany
Department of General Maggiore Hospital Parma Italy
Department of General Surgery Division of Surgery Rambam Health Care Campus Haifa Israel
Department of General Surgery Erzincan University Faculty of Medicine Erzincan Turkey
Department of General Surgery Hospital San Juan de Dios de La Serena La Serena Chile
Department of General Surgery Jesenice General Hospital Jesenice Slovenia
Department of General Surgery Kuala Krai Hospital Kuala Krai Kelantan Malaysia
Department of General Surgery Mansoura Faculty of Medicine Mansoura University Mansoura Egypt
Department of General Surgery Tan Tock Seng Hospital Tan Tock Seng Singapore
Department of Global Health and Population Harvard T H Chan School of Public Health Boston MA USA
Department of Infectious Diseases Alfred Hospital Melbourne VIC Australia
Department of Intensive Care Erasme Hospital Université libre de Bruxelles Brussels Belgium
Department of Laparoscopic and Robotic Surgery Colli Monaldi Hospital Naples Italy
Department of Mathematics Imperial College London London UK
Department of Medicine Infectious Disease Division King Fahad Medical City Riyadh Saudi Arabia
Department of Microbiology Gandhi Medical College Bhopal India
Department of Pharmacy Lebanese International University Beirut Lebanon
Department of Surgery Academic Medical Centre Amsterdam The Netherlands
Department of Surgery Albert Einstein College of Medicine and Jacobi Medical Center Bronx NY USA
Department of Surgery and Critical Care Universidad del Valle Fundación Valle del Lili Cali Colombia
Department of Surgery and Obstetrics Gynaecology Regional Hospital Limbe Cameroon
Department of Surgery Bizerte Hospital Bizerte Tunisia
Department of Surgery Catholic University of Sacred Heart Policlinico A Gemelli Rome Italy
Department of Surgery College of Health Sciences Obafemi Awolowo University Ile Ife Nigeria
Department of Surgery Division of Trauma University of Arizona Tucson AZ USA
Department of Surgery Edendale Hospital Pietermaritzburg South Africa
Department of Surgery Emergency Hospital of Bucharest Bucharest Romania
Department of Surgery Faculté de médecine Université de Parakou BP 123 Parakou Bénin
Department of Surgery Hospital Clínico Universitario Santiago de Compostela Spain
Department of Surgery Infermi Hospital Rimini Italy
Department of Surgery Inling Hospital Nanjing University School of Medicine Nanjing China
Department of Surgery King Abdullah University Hospital Irbid Jordan
Department of Surgery Macerata Hospital Via Santa Lucia 2 62100 Macerata Italy
Department of Surgery Maggiore Hospital Bologna Italy
Department of Surgery Medical School University of Pécs Pécs Hungary
Department of Surgery MOSC Medical College Kolenchery Cochin India
Department of Surgery North Estonia Medical Center Tallinn Estonia
Department of Surgery Pirogov Russian National Research Medical University Moscow Russian Federation
Department of Surgery Post Graduate Institute of Medical Sciences Rohtak India
Department of Surgery Quatre Villes Hospital St Cloud France
Department of Surgery Radboud University Nijmegen Medical Center Nijmegen The Netherlands
Department of Surgery Radiology University Hospital of the West Indies Kingston Jamaica
Department of Surgery School of Medicine Washington University in Saint Louis Missouri USA
Department of Surgery Sheri Kashmir Institute of Medical Sciences Srinagar India
Department of Surgery St Josef Hospital Ruhr University Bochum Bochum Germany
Department of Surgery The Brunei Cancer Centre Jerudong Park Brunei
Department of Surgery UC San Diego Medical Center San Diego USA
Department of Surgery University Clinical Center of Tuzla Tuzla Bosnia and Herzegovina
Department of Surgery University Hospital Center Zagreb Croatia
Department of Surgery University Hospital of Trauma Tirana Albania
Department of Surgery University of Colorado Denver CO USA
Department of Surgery University of Colorado Denver Health Medical Center Denver CO USA
Department of Surgery University of Virginia Health System Charlottesville VA USA
Department of Surgery University of Washington Seattle WA USA
Department of Surgery Virginia Commonwealth University Richmond VA USA
Department of Surgery Yonsei University College of Medicine Seoul South Korea
Department of Surgical Sciences Cannizzaro Hospital University of Catania Catania Italy
Department of Trauma Surgery Royal Perth Hospital Perth Australia
Department of Traumatology John Hunter Hospital and University of Newcastle Newcastle NSW Australia
Division of Acute Care Surgery Department of Surgery University of Michigan Ann Arbor MI USA
Division of Emergency and Trauma Surgery Ribeirão Preto Medical School Ribeirão Preto Brazil
Division of Surgery Vittorio Emanuele Hospital Catania Italy
Emergency Department University of Leipzig Leipzig Germany
General Acute Care and Trauma Surgery Foothills Medical Centre Calgary AB Canada
General and Upper GI Surgery Queen Elizabeth Hospital Birmingham UK
General Surgery Department Centro Hospitalar de São João Porto Portugal
General Surgery Department Medical University University Hospital St George Plovdiv Bulgaria
General Surgery Department Papa Giovanni XXIII Hospital Bergamo Italy
General Surgery ULSS19 del Veneto Adria Hospital RO Italy
Genomic Research Laboratory Geneva University Hospitals Geneva Switzerland
Health Research Program Institute of Economic and Social Research University of Zambia Lusaka Zambia
Hospital Privado Centro Médico de Caracas and Hospital Vargas de Caracas Caracas Venezuela
Ifakara Health Institute Dar es Salaam Tanzania
Infection Control Unit Angers University CHU d'Angers Angers France
Infectious Diseases Division Santa Maria Misericordia University Hospital Udine Italy
Infectious Diseases Unit University of Genoa and IRCCS San Martino IST Genoa Italy
Infectología Institucional SRL Hospital Municipal Chivilcoy Buenos Aires Argentina
Institut Pasteur Abidjan Ivory Coast
Institute of Hygiene Charité Universitätsmedizin Berlin Hindenburgdamm 27 12203 Berlin Germany
Intensive Care Department Hospital Clínico San Carlos Madrid Spain
Nottingham Oesophago Gastric Unit Nottingham University Hospitals Nottingham UK
Orgamed Consulting Bad Griesbach Germany
Pharmacy Department Alfred Health Melbourne VIC Australia
Research Unit Health Policy Consult Weija Accra Ghana
School of Life Science and The ithree Institute University of Technology Sydney NSW Australia
School of Medicine Western Sydney University Campbelltown NSW Australia
Sudan National Public Health Laboratory Federal Ministry of Health Khartoum Sudan
Surgery Health Care Group Hull and East Yorkshire Hospitals NHS Trust Hull UK
Texas Tech University Health Sciences Center School of Pharmacy Abilene TX USA
Trauma and Acute Care Service St Michael's Hospital University of Toronto Toronto Canada
Trauma and Acute Care Surgery Unit Hadassah Hebrew University Medical Center Jerusalem Israel
Trauma and Emergency Surgery Department Chang Gung Memorial Hospital Taoyuan City Taiwan
See more in PubMed
Dellit TH, Owens RC, McGowan JE, Jr, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America. Society for Healthcare Epidemiology of America Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–177. doi: 10.1086/510393. PubMed DOI
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197:1079–1081. doi: 10.1086/533452. PubMed DOI
Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:1–12. doi: 10.1086/595011. PubMed DOI
Rao GG. Risk factors for the spread of antibiotic-resistant bacteria. Drugs. 1998;55:323–330. doi: 10.2165/00003495-199855030-00001. PubMed DOI
Deege MP, Paterson DL. Reducing the development of antibiotic resistance in critical care units. Curr Pharm Biotechnol. 2011;12:2062–2069. doi: 10.2174/138920111798808301. PubMed DOI
Septimus EJ, Owens RC., Jr Need and potential of antimicrobial stewardship in community hospitals. Clin Infect Dis. 2011;53(Suppl 1):S8–S14. doi: 10.1093/cid/cir363. PubMed DOI
Recommendations for preventing the spread of vancomycin resistance: recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). Am J Infect Control. 1995;23:87–94. PubMed
Donskey CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant gram-negative bacilli. Clin Infect Dis. 2006;43(Suppl 2):S62–S69. doi: 10.1086/504481. PubMed DOI
Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12:412–416. doi: 10.1016/j.tim.2004.07.004. PubMed DOI
Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother. 1994;38:409–414. doi: 10.1128/AAC.38.3.409. PubMed DOI PMC
Bhalla A, Pultz NJ, Ray AJ, Hoyen CK, Eckstein EC, Donskey CJ. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol. 2003;24:644–649. doi: 10.1086/502267. PubMed DOI
Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med. 2000;343:1925–1932. doi: 10.1056/NEJM200012283432604. PubMed DOI PMC
Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:905–914. doi: 10.1093/cid/cis580. PubMed DOI PMC
Ruppé E, Lixandru B, Cojocaru R, Büke C, Paramythiotou E, Angebault C, et al. Relative fecal abundance of extended-spectrum-beta-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob Agents Chemother. 2013;57:4512–4517. doi: 10.1128/AAC.00238-13. PubMed DOI PMC
Paphitou NI. Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agents. 2013;42(Suppl):S25–S28. doi: 10.1016/j.ijantimicag.2013.04.007. PubMed DOI
Pulcini C, Gyssens IC. How to educate prescribers in antimicrobial stewardship practices. Virulence. 2013;4:192–202. doi: 10.4161/viru.23706. PubMed DOI PMC
Viscidi R, Willey S, Bartlett JG. Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. Gastroenterology. 1981;81:5–9. PubMed
Sartelli M, Malangoni MA, Abu-Zidan FM, Griffiths EA, Di Bella S, McFarland LV, et al. WSES guidelines for management of Clostridium difficile infection in surgical patients. World J Emerg Surg. 2015;10:38. doi: 10.1186/s13017-015-0033-6. PubMed DOI PMC
Farrell RJ, LaMont JT. Pathogenesis and clinical manifestations of Clostridium difficile diarrhea and colitis. Curr Top Microbiol Immunol. 2000;250:109–125. PubMed
Hensgens MP, Goorhuis A, Dekkers OM, Kuijper EJ. Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother. 2012;67:742–748. doi: 10.1093/jac/dkr508. PubMed DOI
Muto CA, Pokrywka M, Shutt K, Mendelshon AB, Nouri K, Posey K, et al. A large outbreak of Clostridium difficile–associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use. Infect Control Hosp Epidemiol. 2005;26:273–280. doi: 10.1086/502539. PubMed DOI
Loo VG, Poirier L, Miller MA, Oughton M, Libman MB, Michaud S, et al. A predominately clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353:2442–2449. doi: 10.1056/NEJMoa051639. PubMed DOI
Pépin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis. 2005;41:1254–1260. doi: 10.1086/496986. PubMed DOI
Dubberke ER, Reske KA, Yan Y, Olsen MA, McDonald LC, Fraser VJ. Clostridium difficile-associated disease in a setting of endemicity: identification of novel risk factors. Clin Infect Dis. 2007;45:1543–1549. doi: 10.1086/523582. PubMed DOI
Owens RC, Donskey CJ, Gaynes RP, Loo VG, Muto CA. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis. 2008;46:19–31. doi: 10.1086/521859. PubMed DOI
McCusker ME, Harris AD, Perencevich E, Roghmann M. Fluoroquinolone use and Clostridium difficile-associated diarrhea. Emerg Infect Dis. 2003;9:730–733. doi: 10.3201/eid0906.020385. PubMed DOI PMC
Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;16(372):1539–1548. PubMed
Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:881–891. doi: 10.1093/jac/dkt477. PubMed DOI
Kim PK, Huh HC, Cohen HW, Feinberg EJ, Ahmad S, Coyle C, et al. Intracolonic vancomycin for severe Clostridium difficile colitis. Surg Infect (Larchmt) 2013;14:532–539. doi: 10.1089/sur.2012.158. PubMed DOI PMC
Neal MD, Alverdy JC, Hall DE, Simmons RL, Zuckerbraun BS. Diverting loop ileostomy and colonic lavage: an alternative to total abdominal colectomy for the treatment of severe, complicated Clostrodium difficile associated disease. Ann Surg. 2011;254:423–427. doi: 10.1097/SLA.0b013e31822ade48. PubMed DOI
Bougnoux ME, Diogo D, François N, Sendid B, Veirmeire S, Colombel JF, et al. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol. 2006;44:1810–1820. doi: 10.1128/JCM.44.5.1810-1820.2006. PubMed DOI PMC
Kam AP, Xu J. Diversity of commensal yeasts within and among healthy hosts. Diagn Microbiol Infect Dis. 2002;43:19–28. doi: 10.1016/S0732-8893(02)00364-4. PubMed DOI
Xu J, Boyd CM, Livingston E, Meyer W, Madden JF, Mitchell TG. Species and genotypic diversities and similarities of pathogenic yeasts colonizing women. J Clin Microbiol. 1999;37:3835–3843. PubMed PMC
Miranda LN, Van Der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16. doi: 10.1016/j.jhin.2009.02.009. PubMed DOI
Yan L, Yang C, Tang J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol Res. 2013;168:389–395. doi: 10.1016/j.micres.2013.02.008. PubMed DOI
Schulte DM, Sethi A, Gangnon R, Duster M, Maki DG, Safdar N. Risk factors for Candida colonization and Co-colonization with multi-drug resistant organisms at admission. Antimicrob Resist Infect Control. 2015;4:46. doi: 10.1186/s13756-015-0089-9. PubMed DOI PMC
Aly M, Balkhy HH. The prevalence of antimicrobial resistance in clinical isolates from gulf corporation council countries. Antimicrob Resist Infect Control. 2012;1:26. doi: 10.1186/2047-2994-1-26. PubMed DOI PMC
Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. PubMed DOI
Ashiru-Oredope D, Cookson B, Fry C, Advisory Committee on Antimicrobial Resistance and Healthcare Associated Infection Professional Education Subgroup Developing the first national antimicrobial prescribing and stewardship competences. J Antimicrob Chemother. 2014;69:2886–2888. doi: 10.1093/jac/dku350. PubMed DOI
Allegranzi B, Pittet D. Preventing infections acquired during health-care delivery. Lancet. 2008;372:1719–1720. doi: 10.1016/S0140-6736(08)61715-8. PubMed DOI
ECDC. Annual epidemiological report. Antimicrobial resistance and healthcare-associated infections. http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-annual-epidemiological-report.pdf. Accessed 03 Apr 2016.
World Health Organization (WHO). Global action plan on antimicrobial resistance. http://apps.who.int/iris/bitstream/10665/193736/1/9789241509763_eng.pdf?ua=1. Accessed 03 Apr 2016.
Huttner A, Harbarth S, Carlet J, Cosgrove S, Goossens H, Holmes A, et al. Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob Resist Infect Control. 2013;2:31. doi: 10.1186/2047-2994-2-31. PubMed DOI PMC
Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–168. doi: 10.1016/S1473-3099(15)00424-7. PubMed DOI
Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–166. doi: 10.1016/S1473-3099(08)70041-0. PubMed DOI
Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infect Dis Clin North Am. 1997;11:875–887. doi: 10.1016/S0891-5520(05)70395-0. PubMed DOI
Courpon-Claudinon A, Lefort A, Panhard X, Clermont O, Dornic Q, Fantin B, et al. Bacteraemia caused by third-generation cephalosporin-resistant Escherichia coli in France: prevalence, molecular epidemiology and clinical features. Clin Microbiol Infect. 2011;17:557–565. doi: 10.1111/j.1469-0691.2010.03298.x. PubMed DOI
Thaden JT, Fowler VG, Sexton DJ, Anderson DJ. Increasing Incidence of Extended-Spectrum beta-lactamase-Producing Escherichia coli in Community Hospitals throughout the Southeastern United States. Infect Control Hosp Epidemiol. 2016;37:49–54. doi: 10.1017/ice.2015.239. PubMed DOI PMC
Makoka MH, Miller WC, Hoffman IF, Cholera R, Gilligan PH, Kamwendo D, et al. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance. BMC Infect Dis. 2012;12:67. doi: 10.1186/1471-2334-12-67. PubMed DOI PMC
McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm. 1997;54:1420–1433. PubMed
Martinez JL, Baquero F. Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother. 2000;44:1771–1777. doi: 10.1128/AAC.44.7.1771-1777.2000. PubMed DOI PMC
Palmer KL, Kos VN, Gilmore MS. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol. 2010;13:632–639. doi: 10.1016/j.mib.2010.08.004. PubMed DOI PMC
Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V, Castellanos M, et al. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother. 2014;58(11):6550–6557. doi: 10.1128/AAC.03183-14. PubMed DOI PMC
Brown-Jaque M, Calero-Cáceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid. 2015;79:1–7. doi: 10.1016/j.plasmid.2015.01.001. PubMed DOI
Trueba G. Why does Evolution Matter? The Importance of Understanding Evolution. UK: Cambridge Scholars Publishing; 2014. Chapter Ten: The forces behind the dissemination of bacterial virulence and antibiotic resistance.
Iida S, Meyer J, Arber W. Genesis and natural history of IS-mediated transposons. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):27–43. doi: 10.1101/SQB.1981.045.01.006. PubMed DOI
Poirel L, Marqué S, Héritier C, Segonds C, Chabanon G, Nordmann P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(1):202–208. doi: 10.1128/AAC.49.1.202-208.2005. PubMed DOI PMC
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother. 2002;46(9):3045–3049. doi: 10.1128/AAC.46.9.3045-3049.2002. PubMed DOI PMC
Ray MD, Boundy S, Archer GL. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol Microbiol. 2016;100:675–85. doi: 10.1111/mmi.13340. PubMed DOI PMC
Chen L, Mathema B, Pitout JD, DeLeo FR, Kreiswirth BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio. 2014;5(3):e01355–14. doi: 10.1128/mBio.01355-14. PubMed DOI PMC
Smyth DS, McDougal LK, Gran FW, Manoharan A, Enright MC, Song JH, et al. Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus, ST239-MRSA-III. PLoS One. 2010;5(1) doi: 10.1371/journal.pone.0008582. PubMed DOI PMC
Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from Gram-negative bacteria. Annu Rev Microbiol. 2011;65:455–478. doi: 10.1146/annurev-micro-090110-102911. PubMed DOI
Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289:321–331. doi: 10.1098/rstb.1980.0049. PubMed DOI
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–1233. doi: 10.1128/AAC.39.6.1211. PubMed DOI PMC
Bush K, Jacoby GA. Updated Functional Classification of beta-Lactamases. Antimicrob Agents Chemother. 2010;54:969–976. doi: 10.1128/AAC.01009-09. PubMed DOI PMC
Ruppé É, Woerther PL, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care. 2015;5:61. doi: 10.1186/s13613-015-0061-0. PubMed DOI PMC
Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–182. doi: 10.1128/CMR.00036-08. PubMed DOI PMC
Kang CI, Pai H, Kim SH, Kim HB, Kim EC, Oh MD, et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediatedAmpC-type beta-lactamase. J Antimicrob Chemother. 2004;54:1130–1133. doi: 10.1093/jac/dkh462. PubMed DOI
Tamma PD, Girdwood SC, Gopaul R, Tekle T, Roberts AA, Harris AD, et al. The use of cefepime for treating AmpC beta-lactamase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57:781–788. doi: 10.1093/cid/cit395. PubMed DOI
Schultsz C, Geerlings S. Plasmid-mediated resistance in Enterobacteriaceae: changing landscape and implications for therapy. Drugs. 2012;72:1–16. doi: 10.2165/11597960-000000000-00000. PubMed DOI
Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273. PubMed PMC
Brolund A. Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect Ecol Epidemiol. 2014;1:4. PubMed PMC
Perez F, Bonomo RA. Can we really use beta-lactam/beta-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum beta-lactamase-producing bacteria? Clin Infect Dis. 2012;54:175–177. doi: 10.1093/cid/cir793. PubMed DOI
Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–1083. doi: 10.1093/cid/ciu027. PubMed DOI
Paterson D, Bonomo R. Extended spectrum beta-lactmases. Clin Microbiol Rev. 2005;18:657–686. doi: 10.1128/CMR.18.4.657-686.2005. PubMed DOI PMC
Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26:744–758. doi: 10.1128/CMR.00023-13. PubMed DOI PMC
Weldhagen GF, Poirel L, Nordmann P. Ambler class A extended-spectrum beta-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. Antimicrob Agents Chemother. 2003;47:2385–2392. doi: 10.1128/AAC.47.8.2385-2392.2003. PubMed DOI PMC
Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8:557–584. PubMed PMC
Hammoudi D, Ayoub Moubareck C, Aires J, Adaime A, Barakat A, Fayad N, et al. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-non-susceptible Enterobacteriaceae in 10 hospitals over a one-year period. Int J Infect Dis. 2014;29:139–144. doi: 10.1016/j.ijid.2014.07.017. PubMed DOI
Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:15–22. doi: 10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC
Lee J, Patel G, Huprikar S, Calfee DP, Jenkins SG. Decreased susceptibility to polymyxin B during treatment of carbapenem-resistant Klebsiella pneumoniae infection. J Clin Microbiol. 2009;47:1611–1612. doi: 10.1128/JCM.02466-08. PubMed DOI PMC
Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151–1161. doi: 10.1128/AAC.45.4.1151-1161.2001. PubMed DOI PMC
Ducomble T, Faucheux S, Helbig U, Kaisers UX, König B, Knaust A, et al. Large hospital outbreak of KPC-2-producing Klebsiella pneumoniae: investigating mortality and the impact of screening for KPC-2 with polymerase chain reaction. J Hosp Infect. 2015;89:179–185. doi: 10.1016/j.jhin.2014.11.012. PubMed DOI
Lübbert C, Lippmann N, Busch T, Kaisers UX, Ducomble T, Eckmanns T, et al. Long-term carriage of Klebsiella pneumoniae carbapenemase-2-producing K pneumoniae after a large single-center outbreak in Germany. Am J Infect Control. 2014;42:376–380. doi: 10.1016/j.ajic.2013.12.001. PubMed DOI
Lübbert C, Rodloff AC, Laudi S, Simon P, Busch T, Mössner J, et al. Lessons learned from excess mortality associated with Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in liver transplant recipients. Liver Transpl. 2014;20:736–738. doi: 10.1002/lt.23858. PubMed DOI
Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20:862–872. doi: 10.1111/1469-0691.12697. PubMed DOI
Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:785–796. doi: 10.1016/S1473-3099(13)70190-7. PubMed DOI PMC
Palzkill T. Metallo-beta-lactamase structure and function. Ann N Y Acad Sci. 2013;1277:91–104. doi: 10.1111/j.1749-6632.2012.06796.x. PubMed DOI PMC
Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases a last frontier for beta-lactams? Lancet Inf Dis. 2011;11:381–393. doi: 10.1016/S1473-3099(11)70056-1. PubMed DOI
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–5054. doi: 10.1128/AAC.00774-09. PubMed DOI PMC
Brink AJ, Coetzee J, Clay CG, Sithole S, Richards GA, Poirel L, et al. Emergence of New Delhi Metallo-Beta-Lactamase (NDM-1) and Klebsiella pneumoniae Carbapenemase (KPC-2) in South Africa. J Clin Microbiol. 2012;50:525–527. doi: 10.1128/JCM.05956-11. PubMed DOI PMC
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol. 2009;2:40–61. doi: 10.1111/j.1751-7915.2008.00063.x. PubMed DOI PMC
Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(Suppl 2):S120–S126. doi: 10.1086/428052. PubMed DOI
Ramirez MS, Tolmasky ME. Aminoglycoside Modifying Enzymes. Drug Resist Updat. 2010;13:151–171. doi: 10.1016/j.drup.2010.08.003. PubMed DOI PMC
Kumari H, Balasubramanian D, Zincke D, Mathee K. Role of Pseudomonas aeruginosa AmpR on beta-lactam and non-beta-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol. 2014;63:544–555. doi: 10.1099/jmm.0.070185-0. PubMed DOI PMC
Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother. 1999;43:882–889. PubMed PMC
Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect. 2004;10:12–26. doi: 10.1111/j.1469-0691.2004.00763.x. PubMed DOI
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol. 2015;6:377. doi: 10.3389/fmicb.2015.00377. PubMed DOI PMC
Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302:63–68. doi: 10.1016/j.ijmm.2011.10.001. PubMed DOI PMC
Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. J Glob Infect Dis. 2010;2:291–304. doi: 10.4103/0974-777X.68538. PubMed DOI PMC
Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45:568–585. doi: 10.1016/j.ijantimicag.2015.03.001. PubMed DOI
Linden PK. Optimizing therapy for vancomycin-resistant Enterococci (VRE) Semin Respir Crit Care Med. 2007;28:632–645. doi: 10.1055/s-2007-996410. PubMed DOI
Chou YY, Lin TY, Lin JC, Wang NC, Peng MY, Chang FY. Vancomycin-resistant enterococcal bacteremia: Comparison of clinical features and outcome between Enterococcus faecium and Enterococcus faecalis. J Microbiol Immunol Infect. 2008;41:124–129. PubMed
Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 2012;3:421–569. doi: 10.4161/viru.21282. PubMed DOI PMC
Hodges TL, Zighelboim-Daum S, Eliopoulos GM, Wennersten C, Moellering RC., Jr Antimicrobial susceptibility changes in Enterococcus faecalis following various penicillin exposure regimens. Antimicrob Agents Chemother. 1992;36:121–125. doi: 10.1128/AAC.36.1.121. PubMed DOI PMC
Marothi YA, Agnihotri H, Dubey D. Enterococcal resistance-an overview. Indian J Med Microbiol. 2005;23:214–219. PubMed
Mahbub Alam M, Kobayashi N, Ishino M, Sumi A, Kobayashi K, Uehara N, et al. Detection of a novel aph(2″) allele (aph[2″]-Ie) conferring high-level gentamicin resistance and a spectinomycin resistance gene ant(9)-Ia (aad 9) in clinical isolates of enterococci. Microb Drug Resist. 2005;11:239–247. doi: 10.1089/mdr.2005.11.239. PubMed DOI
Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev. 2007;20:79–114. doi: 10.1128/CMR.00015-06. PubMed DOI PMC
Noskin GA. Vancomycin-resistant Enterococci: Clinical, microbiologic, and epidemiologic features. J Lab Clin Med. 1997;130:14–20. doi: 10.1016/S0022-2143(97)90054-8. PubMed DOI
Fang H, Edlund C, Hedberg M, Nord CE. New findings in beta-lactam and metronidazole resistant Bacteroides fragilis group. Int J Antimicrob Agents. 2002;19:361–370. doi: 10.1016/S0924-8579(02)00019-5. PubMed DOI
Rasmussen BA, Bush K, Tally FP. Antimicrobial resistance in anaerobes. Clin Infect Dis. 1997;24(Suppl 1):S110–S120. doi: 10.1093/clinids/24.Supplement_1.S110. PubMed DOI
Gutacker M, Valsangiacomo C, Piffaretti JC. Identification of two genetic groups in Bacteroides fragilis by multilocus enzyme electrophoresis: distribution of antibiotic resistance (cfiA, cepA) and enterotoxin (bft) encoding genes. Microbiology. 2000;146:1241–1254. doi: 10.1099/00221287-146-5-1241. PubMed DOI
Ang L, Brenwald NP, Walker RM, Andrews J, Fraise A. Carbapenem resistance in Bacteroides fragilis. J Antimicrob Chemother. 2007;59:1042–1044. doi: 10.1093/jac/dkm062. PubMed DOI
Ingham HR, Eaton S, Venables CW, Adams PC. Bacteroides fragilis resistant to metronidazole after long-term therapy. Lancet. 1978;1:214. doi: 10.1016/S0140-6736(78)90655-4. PubMed DOI
Diniz CG, Farias LM, Carvalho MA, Rocha ER, Smith CJ. Differential gene expression in a Bacteroides fragilis metronidazole-resistant mutant. J Antimicrob Chemother. 2004;54:100–108. doi: 10.1093/jac/dkh256. PubMed DOI
Pumbwe L, Chang A, Smith RL, Wexler HM. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist. 2007;13:96–101. doi: 10.1089/mdr.2007.719. PubMed DOI
Nagy E, Urbán E, Nord CE, ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect. 2011;17:371–379. doi: 10.1111/j.1469-0691.2010.03256.x. PubMed DOI
Sartelli M, Catena F, Di Saverio S, Ansaloni L, Coccolini F, Tranà C, et al. The Challenge of antimicrobial resistance in managing intra-abdominal infections. Surg Infect (Larchmt) 2015;16:213–220. doi: 10.1089/sur.2013.262. PubMed DOI
Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel) 2013;6:1335–1346. doi: 10.3390/ph6111335. PubMed DOI PMC
Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Cantón R, Baquero F. Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART) Antimicrob Agents Chemother. 2010;54:3043–3046. doi: 10.1128/AAC.00265-10. PubMed DOI PMC
Sartelli M, Catena F, Ansaloni L, Coccolini F, Corbella D, Moore EE, et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study. World J Emerg Surg. 2014;9:37. doi: 10.1186/1749-7922-9-37. PubMed DOI PMC
Hawser SP, Bouchillon SK, Lascols C, Hackel M, Hoban DJ, Badal RE, et al. Susceptibility of Klebsiella pneumoniae isolates from intra-abdominal infections and molecular characterization of ertapenem-resistant isolates. Antimicrob Agents Chemother. 2011;55:3917–3921. doi: 10.1128/AAC.00070-11. PubMed DOI PMC
Babinchak T, Badal R, Hoban D, Hackel M, Hawser S, Lob S, et al. Trends in susceptibility of selected gram-negative bacilli isolated from intra-abdominal infections in North America: SMART 2005–2010. Diagn Microbiol Infect Dis. 2013;76:379–381. doi: 10.1016/j.diagmicrobio.2013.02.031. PubMed DOI
Sitges-Serra A, Lopez MJ, Girvent M, Almirall S, Sancho JJ. Postoperative enterococcal infection after treatment of complicated intra-abdominal sepsis. Br J Surg. 2002;89:361–367. doi: 10.1046/j.0007-1323.2001.02023.x. PubMed DOI
Burnett RJ, Haverstock DC, Dellinger EP, Reinhart HH, Bohnen JM, Rotstein OD, et al. Definition of the role of enterococcus in intraabdominal infection: analysis of a prospective randomized trial. Surgery. 1995;118:716–721. doi: 10.1016/S0039-6060(05)80040-6. PubMed DOI
Dupont H, Friggeri A, Touzeau J, Airapetian N, Tinturier F, Lobjoie E, et al. Enterococci increase the morbidity and mortality associated with severe intra-abdominal infections in elderly patients hospitalized in the intensive care unit. J Antimicrob Chemother. 2011;66:2379–2385. doi: 10.1093/jac/dkr308. PubMed DOI
Kaffarnik MF, Urban M, Hopt UT, Utzolino S. Impact of enterococcus on immunocompetent and immunosuppressed patients with perforation of the small or large bowel. Technol Health Care. 2012;20:37–48. PubMed
Van Ruler O, Kiewiet JJ, Van Ketel RJ, Boermeester MA, Dutch Peritonitis Study Group Initial microbial spectrum in severe secondary peritonitis and relevance for treatment. Eur J Clin Microbiol Infect Dis. 2012;31:671–682. doi: 10.1007/s10096-011-1357-0. PubMed DOI PMC
Montravers P, Lepape A, Dubreuil L, Gauzit R, Pean Y, Benchimol D, et al. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: results of the French prospective, observational EBIIA study. J Antimicrob Chemother. 2009;63:785–794. doi: 10.1093/jac/dkp005. PubMed DOI
Verma H, Pandey S, Sheoran KD, Marwah S. Surgical audit of patients with ileal perforations requiring ileostomy in a Tertiary Care Hospital in India. Surg Res Pract. 2015;2015:351548. PubMed PMC
Mirza SH, Beeching NJ, Hart CA. Multi-drug resistant typhoid: a global problem. J Med Microbiol. 1996;44:317–319. doi: 10.1099/00222615-44-5-317. PubMed DOI
Hammad OM, Abdel Wahab MF, Zaky S, Abdel Baki AM, Afify A, El Tantawi MA. Multidrug resistant typhoid fever in Egypt. J Med Lab Sci. 2007;16:57–63.
Singhal L, Gupta PK, Kale P, Gautam V, Ray P. Trends in antimicrobial susceptibility of Salmonella typhi from North India (2001–2012) Indian J Med Microbiol. 2014;32:149–152. doi: 10.4103/0255-0857.129799. PubMed DOI
Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev. 2013;26:526–546. doi: 10.1128/CMR.00086-12. PubMed DOI PMC
Snydman DR, Jacobus NV, McDermott LA, Golan Y, Hecht DW, Goldstein EJ, et al. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005–2007) Clin Infect Dis. 2010;50(Suppl 1):S26–S33. doi: 10.1086/647940. PubMed DOI
Ramsay C, Brown E, Hartman G, Davey P. Room for improvement: a systematic review of the quality of evaluations of interventions to improve hospital antibiotic prescribing. J Antimicrob Chemother. 2003;52:764–771. doi: 10.1093/jac/dkg460. PubMed DOI
Dortch MJ, Fleming SB, Kauffmann RM, Dossett LA, Talbot TR, May AK. Infection reduction strategies including antibiotic stewardship protocols in surgical and trauma intensive care units are associated with reduced resistant gram-negative healthcare-associated infections. Surg Infect (Larchmt) 2011;12:15–25. doi: 10.1089/sur.2009.059. PubMed DOI
White AC, Jr, Atmar RL, Wilson J, Cate TR, Stager CE, Greenberg SB. Effects of requiring prior authorization for selected antimicrobials: expenditures, susceptibilities, and clinical outcomes. Clin Infect Dis. 1997;25:230–239. doi: 10.1086/514545. PubMed DOI
Davey P, Brown E, Charani E, Fenelon L, Gould IM, Holmes A, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev. 2013;4 PubMed
Marshall JC. Principles of source control in the early management of sepsis. Curr Infect Dis Rep. 2010;12:345–353. doi: 10.1007/s11908-010-0126-z. PubMed DOI
Wacha H, Hau T, Dittmer R, Ohmann C. Risk factors associated with intraabdominal infections: a prospective multicenter study. Peritonitis Study Group. Langenbecks Arch Surg. 1999;384:24–32. doi: 10.1007/s004230050169. PubMed DOI
Sartelli M, Abu-Zidan FM, Catena F, Griffiths EA, Di Saverio S, Coimbra R, et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study) World J Emerg Surg. 2015;10:61. doi: 10.1186/s13017-015-0055-0. PubMed DOI PMC
VanSonnenberg E, Ferrucci JT, Mueller PR, Wittenberg J, Simeone JF. Percutaneous drainage of abscesses and fluid collections: Technique, results, and applications. Radiology. 1982;142:1–10. doi: 10.1148/radiology.142.1.7053517. PubMed DOI
Bouali K, Magotteaux P, Jadot A, Saive C, Lombard R, Weerts J, et al. Percutaneous catheter drainage of abdominal abscess after abdominal surgery: Results in 121 cases. J Belg Radiol. 1993;76:11–14. PubMed
VanSonnenberg E, Wing VW, Casola G, Coons HG, Nakamoto SK, Mueller PR, et al. Temporizing effect of percutaneous drainage of complicated abscesses in critically ill patients. Am J Roentgenol. 1984;142:821–826. doi: 10.2214/ajr.142.4.821. PubMed DOI
Jaffe TA, Nelson RC, DeLong D, Paulson EK. Practice Patterns in Percutaneous Image-guided Intra-abdominal Abscess Drainage: Survey of Academic and Private Practice Centres. Radiology. 2004;233:750–756. doi: 10.1148/radiol.2333032063. PubMed DOI
Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39:1190–1206. doi: 10.1007/s00134-013-2906-z. PubMed DOI PMC
Kirkpatrick AW, Roberts DJ, Faris PD, Ball CG, Kubes P, Tiruta C, et al. Active Negative Pressure Peritoneal Therapy After Abbreviated Laparotomy: The Intraperitoneal Vacuum Randomized Controlled Trial. Ann Surg. 2015;262:38–46. doi: 10.1097/SLA.0000000000001095. PubMed DOI PMC
Menichetti F, Sganga G. Definition and classification of intra-abdominal infections. J Chemother. 2009;21(Suppl 1):3–4. doi: 10.1179/joc.2009.21.Supplement-1.3. PubMed DOI
Sartelli M. A focus on intra-abdominal infections. World J Emerg Surg. 2010;5:9. doi: 10.1186/1749-7922-5-9. PubMed DOI PMC
Gupta S, Kaushik R. Peritonitis–the Eastern experience. World J Emerg Surg. 2006;1:13. doi: 10.1186/1749-7922-1-13. PubMed DOI PMC
Mishra SP, Tiwary SK, Mishra M, Gupta SK. An introduction of Tertiary Peritonitis. J Emerg Trauma Shock. 2014;7:121–123. doi: 10.4103/0974-2700.136872. PubMed DOI PMC
Reemst PH, Van Goor H, Goris RJ. SIRS, MODS and tertiary peritonitis. Eur J Surg Suppl. 1996;576:47–48. PubMed
Chromik AM, Meiser A, Hölling J, Sülberg D, Daigeler A, Meurer K, et al. Identification of patients at risk for development of tertiary peritonitis on a surgical intensive care unit. J Gastrointest Surg. 2009;13:1358–1367. doi: 10.1007/s11605-009-0882-y. PubMed DOI
Herzog T, Chromik AM, Uhl W. Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria. Eur J Med Res. 2010;15:525–532. doi: 10.1186/2047-783X-15-12-525. PubMed DOI PMC
Roehrborn A, Thomas L, Potreck O, Ebener C, Ohmann C, Goretzki PE, et al. The microbiology of postoperative peritonitis. Clin Infect Dis. 2001;33:1513–1519. doi: 10.1086/323333. PubMed DOI
Mulier S, Penninckx F, Verwaest C, Filez L, Aerts R, Fieuws S, et al. Factors affecting mortality in generalized postoperative peritonitis: multivariate analysis in 96 patients. World J Surg. 2003;27:379–384. doi: 10.1007/s00268-002-6705-x. PubMed DOI
Ordoñez CA, Puyana JC. Management of peritonitis in the critically ill patient. Surg Clin North Am. 2006;86:1323–1349. doi: 10.1016/j.suc.2006.09.006. PubMed DOI PMC
Seguin P, Fédun Y, Laviolle B, Nesseler N, Donnio PY, Mallédant Y. Risk factors for multidrug-resistant bacteria in patients with post-operative peritonitis requiring intensive care. J Antimicrob Chemother. 2010;65:342–346. doi: 10.1093/jac/dkp439. PubMed DOI
Augustin P, Kermarrec N, Muller-Serieys C, Lasocki S, Chosidow D, Marmuse JP, et al. Risk factors for multi drug resistant bacteria and optimization of empirical antibiotic therapy in postoperative peritonitis. Crit Care. 2010;14(1):R20. doi: 10.1186/cc8877. PubMed DOI PMC
Montravers P, Chalfine A, Gauzit R, Lepape A, Pierre Marmuse J, Vouillot C, et al. Clinical and therapeutic features of nonpostoperative nosocomial intra-abdominal infections. Ann Surg. 2004;239:409–416. doi: 10.1097/01.sla.0000114214.68169.e9. PubMed DOI PMC
Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791–797. doi: 10.7326/0003-4819-137-10-200211190-00007. PubMed DOI
Cardoso T, Almeida M, Friedman ND, Aragão I, Costa-Pereira A, Sarmento E, et al. Classification of healthcare-associated infection: a systematic review 10 years after the first proposal. BMC Med. 2014;12:40. doi: 10.1186/1741-7015-12-40. PubMed DOI PMC
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidlines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644. PubMed DOI
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B. PubMed DOI
Esteban A, Frutos-Vivar F, Ferguson ND, Peñuelas O, Lorente JA, Gordo F, et al. Sepsis incidence and outcome: contrasting the intensive care unit with the hospital ward. Crit Care Med. 2007;35:1284–1289. doi: 10.1097/01.CCM.0000260960.94300.DE. PubMed DOI
Sartelli M, Catena F, Di Saverio S, Ansaloni L, Malangoni M, Moore EE, et al. Current concept of abdominal sepsis: WSES position paper. World J Emerg Surg. 2014;9:22. doi: 10.1186/1749-7922-9-22. PubMed DOI PMC
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Cain SE, Kohn J, Bookstaver PB, Albrecht H, Al-Hasan MN. Stratification of the impact of inappropriate empirical antimicrobial therapy for Gram-negative bloodstream infections by predicted prognosis. Antimicrob Agents Chemother. 2015;59:245–250. doi: 10.1128/AAC.03935-14. PubMed DOI PMC
Guirao X, Arias J, Badía JM, García-Rodríguez JA, Mensa J, Alvarez-Lerma F, et al. Recommendations in the empiric anti-infective agents of intra-abdominal infection. Rev Esp Quimioter. 2009;22:151–172. PubMed
Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt) 2010;11:79–109. doi: 10.1089/sur.2009.9930. PubMed DOI
Solomkin JS, Mazuski JE, Baron EJ, Sawyer RG, Nathens AB, DiPiro JT, et al. Guidelines for the selection of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis. 2003;37:997–1005. doi: 10.1086/378702. PubMed DOI
Mazuski JE, Sawyer RG, Nathens AB, DiPiro JT, Schein M, Kudsk KA, et al. The Surgical Infection Society guidelines on antimicrobial therapy for intra-abdominal infections: an executive summary. Surg Infect (Larchmt) 2002;3:161–173. doi: 10.1089/109629602761624171. PubMed DOI
Sartelli M, Viale P, Catena F, Ansaloni L, Moore E, Malangoni M, et al. 2013 WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2013;8:3. doi: 10.1186/1749-7922-8-3. PubMed DOI PMC
Sartelli M, Viale P, Koike K, Pea F, Tumietto F, Van Goor H, et al. WSES consensus conference: Guidelines for first-line management of intra-abdominal infections. World J Emerg Surg. 2011;6:2. doi: 10.1186/1749-7922-6-2. PubMed DOI PMC
Chow AW, Evans GA, Nathens AB, Ball CG, Hansen G, Harding GK, et al. Canadian practice guidelines for surgical intra-abdominal infections. Can J Infect Dis Med Microbiol. 2010;21:11–37. PubMed PMC
Gomi H, Solomkin JS, Takada T, Strasberg SM, Pitt HA, Yoshida M, et al. TG13 antimicrobial therapy for acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci. 2013;20:60–70. doi: 10.1007/s00534-012-0572-0. PubMed DOI
Montravers P, Dupont H, Leone M, Constantin JM, Mertes PM, Société française d’anesthésie et de réanimation (Sfar) et al. Guidelines for management of intra-abdominal infections. Anaesth Crit Care Pain Med. 2015;34:117–130. doi: 10.1016/j.accpm.2015.03.005. PubMed DOI
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a five-fold reduction of survival in human septic shock. Chest. 2009;136:1237–1248. doi: 10.1378/chest.09-0087. PubMed DOI
Tumbarello M, Trecarichi EM, Bassetti M, De Rosa FG, Spanu T, Di Meco E, et al. Identifying patients harboring extended-spectrum-beta-lactamase-producing Enterobacteriaceae on hospital admission: derivation and validation of a scoring system. Antimicrob Agents Chemother. 2011;55:3485–3490. doi: 10.1128/AAC.00009-11. PubMed DOI PMC
Al-Hasan MN, Eckel-Passow JE, Baddour LM. Impact of healthcare-associated acquisition on community-onset Gram-negative bloodstream infection: a population-based study. Eur J Clin Microbiol Infect Dis. 2012;31:1163–1171. doi: 10.1007/s10096-011-1424-6. PubMed DOI PMC
Ruppé E, Armand-Lefèvre L, Estellat C, Consigny PH, El Mniai A, Boussadia Y, et al. High Rate of Acquisition but Short Duration of Carriage of Multidrug-Resistant Enterobacteriaceae After ravel to the Tropics. Clin Infect Dis. 2015;61:593–600. doi: 10.1093/cid/civ333. PubMed DOI
McDonald LC. Trends in antimicrobial resistance in health care-associated pathogens and effect on treatment. Clin Infect Dis. 2006;42(Suppl 2):S65–S71. doi: 10.1086/499404. PubMed DOI
Montravers P, Augustin P, Grall N, Desmard M, Allou N, Marmuse JP, Guglielminotti J. Characteristics and outcomes of anti-infective de-escalation during health care-associated intra-abdominal infections. Crit Care. 2016;20(1):83. doi: 10.1186/s13054-016-1267-8. PubMed DOI PMC
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002. PubMed DOI
Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–2329. doi: 10.1001/jama.2009.1754. PubMed DOI
De Waele J, Lipman J, Sakr Y, Marshall JC, Vanhems P, Barrera Groba C, et al. Abdominal infections in the intensive care unit: characteristics, treatment and determinants of outcome. BMC Infect Dis. 2014;14:420. doi: 10.1186/1471-2334-14-420. PubMed DOI PMC
Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9. PubMed DOI
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228. doi: 10.1007/s00134-012-2769-8. PubMed DOI PMC
Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–4863. doi: 10.1128/AAC.00627-10. PubMed DOI PMC
Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, et al. Edusepsis Study Group: Effectiveness of treatments for severe sepsis: A prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–866. doi: 10.1164/rccm.200812-1912OC. PubMed DOI
Castellanos-Ortega A, Suberviola B, García-Astudillo LA, Holanda MS, Ortiz F, Llorca J, et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients: Results of a three-year follow-up quasi-experimental study. Crit Care Med. 2010;38:1036–1043. doi: 10.1097/CCM.0b013e3181d455b6. PubMed DOI
Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Horton JM, Studnek JR, et al. Association between timing of antibiotic administration and mortality from septic shock in patients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39:2066–2071. doi: 10.1097/CCM.0b013e31821e87ab. PubMed DOI PMC
Rello J, Vidaur L, Sandiumenge A, Rodriguez A, Gualis B, Boque C, et al. De-escalation therapy in ventilator-associated pneumonia. Crit Care Med. 2004;32:2183–2190. doi: 10.1097/01.CCM.0000145997.10438.28. PubMed DOI
Alvarez-Lerma F, Alvarez B, Luque P, Ruiz F, Dominguez-Roldan JM, Quintana E, et al. Empiric broad-spectrum antibiotic therapy of nosocomial pneumonia in the intensive care unit: a prospective observational study. Crit Care. 2006;10:R78. doi: 10.1186/cc4919. PubMed DOI PMC
Eachempati SR, Hydo LJ, Shou J, Barie PS. Does de-escalation of antibiotic therapy for ventilator-associated pneumonia affect the likelihood of recurrent pneumonia or mortality in critically ill surgical patients? J Trauma. 2009;66:1343–1348. doi: 10.1097/TA.0b013e31819dca4e. PubMed DOI
Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernández-Delgado E, Herrera-Melero I, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014;40:32–40. doi: 10.1007/s00134-013-3077-7. PubMed DOI
Leone M, Bechis C, Baumstarck K, Lefrant JY, Albanèse J, Jaber S, et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med. 2014;40:1399–1408. doi: 10.1007/s00134-014-3411-8. PubMed DOI
Silva BN, Andriolo RB, Atallah AN, Salomão R. De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev. 2013;3 PubMed PMC
Madaras-Kelly K, Jones M, Remington R, Caplinger C, Huttner B, Samore M. Description and validation of a spectrum score method to measure antimicrobial de-escalation in healthcare associated pneumonia from electronic medical records data. BMC Infect Dis. 2015;15:197. doi: 10.1186/s12879-015-0933-9. PubMed DOI PMC
Cisneros JM, Neth O, Gil-Navarro MV, Lepe JA, Jiménez-Parrilla F, Cordero E, et al. Global impact of an educational antimicrobial stewardship programme on prescribing practice in a tertiary hospital centre. Clin Microbiol Infect. 2014;20:82–88. doi: 10.1111/1469-0691.12191. PubMed DOI
Lew KY, Ng TM, Tan M, Tan SH, Lew EL, Ling LM, et al. Safety and clinical outcomes of carbapenem de-escalation as part of anantimicrobial stewardship programme in an ESBL-endemic setting. J Antimicrob Chemother. 2015;70:1219–1225. PubMed
Tucker CE, Lockwood AM, Nguyen NH. Antibiotic dosing in obesity: the search for optimum dosing strategies. Clin Obes. 2014;4:287–295. PubMed
Hackel MA, Badal RE, Bouchillon SK, Biedenbach DJ, Hoban DJ. Resistance rates of intra-abdominal isolates from intensive care units and non-intensive care units in the United States: the study for monitoring antimicrobial resistance trends 2010–2012. Surg Infect (Larchmt) 2015;16:298–304. doi: 10.1089/sur.2014.060. PubMed DOI
Powell LL, Wilson SE. The role of beta-lactam antimicrobials as single agents in treatment of intra-abdominal infection. Surg Infect (Larchmt) 2000;1:57–63. doi: 10.1089/109629600321308. PubMed DOI
Al-Hasan MN, Lahr BD, Eckel-Passow JE, Baddour LM. Antimicrobial resistance trends of Escherichia coli bloodstream isolates: a population-based study, 1998–2007. J Antimicrob Chemother. 2009;64:169–174. doi: 10.1093/jac/dkp162. PubMed DOI PMC
Johnson JR, Owens K, Gajewski A, Clabots C. Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J Infect Dis. 2008;197:218–224. doi: 10.1086/524844. PubMed DOI
Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG. Piperacillin-tazobactam: a beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2007;5:365–383. doi: 10.1586/14787210.5.3.365. PubMed DOI
Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:2793–2803. doi: 10.1093/jac/dks301. PubMed DOI
Tamma PD, Han JH, Rock C, Harris AD, Lautenbach E, Hsu AJ, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis. 2015;60:1319–1325. PubMed PMC
Harris PN, Tambyah PA, Paterson DL. Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15:475–485. doi: 10.1016/S1473-3099(14)70950-8. PubMed DOI
Garbino J, Villiger P, Caviezel A, Matulionyte R, Uckay I, Morel P, et al. A randomized prospective study of cefepime plus metronidazole with imipenem-cilastatin in the treatment of intra-abdominal infections. Infection. 2007;35:161–166. doi: 10.1007/s15010-007-6237-2. PubMed DOI
Henry X, Amoroso A, Coyette J, Joris B. Interaction of ceftobiprole with the low-affinity PBP 5 of Enterococcus faecium. Antimicrob Agents Chemother. 2010;54:953–955. doi: 10.1128/AAC.00983-09. PubMed DOI PMC
Liapikou A, Cillóniz C, Torres A. Ceftobiprole for the treatment of pneumonia: a European perspective. Drug Design, Development and Therapy. 2015;9:4565–4572. PubMed PMC
Queenan AM, Shang W, Kania M, Page MG, Bush K. Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother. 2007;51:3089–3095. doi: 10.1128/AAC.00218-07. PubMed DOI PMC
Falagas ME, Matthaiou DK, Bliziotis IA. Systematic review: Fluoroquinolones for the treatment of intra-abdominal surgical infections. Aliment Pharmacol Ther. 2007;25:123–131. doi: 10.1111/j.1365-2036.2006.03154.x. PubMed DOI
Borcherding SM, Stevens R, Nicholas RA, Corley CR, Self T. Quinolones: A practical review of clinical uses, dosing considerations, and drug interactions. J Fam Pract. 1996;42:69–78. PubMed
Ortega M, Marco F, Soriano A, Almela M, Martínez JA, Muñoz A, et al. Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother. 2009;63:568–574. doi: 10.1093/jac/dkn514. PubMed DOI
Banerjee R, Johnston B, Lohse C, Porter SB, Clabots C, Johnson JR. Escherichia coli sequence type 131 is a dominant, antimicrobial-resistant clonal group associated with healthcare and elderly hosts. Infect Control Hosp Epidemiol. 2013;34:361–369. doi: 10.1086/669865. PubMed DOI PMC
Patterson JE. Antibiotic utilization: is there an effect on antimicrobial resistance? Chest. 2001;119(2 Suppl):426S–430S. doi: 10.1378/chest.119.2_suppl.426S. PubMed DOI
Sartelli M, Catena F, Coccolini F, Pinna AD. Antimicrobial management of intra-abdominal infections: literature's guidelines. World J Gastroenterol. 2012;18:865–871. doi: 10.3748/wjg.v18.i9.865. PubMed DOI PMC
Falagas ME, Peppas G, Makris GC, Karageorgopoulos DE, Matthaiou DK. Meta-analysis: Ertapenem for complicated intra-abdominal infections. Aliment Pharmacol Ther. 2008;27:919–931. doi: 10.1111/j.1365-2036.2008.03642.x. PubMed DOI
Lepper PM, Grusa E, Reichl H, Högel J, Trautmann M. Consumption of imipenem correlates with beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2002;46:2920–2925. doi: 10.1128/AAC.46.9.2920-2925.2002. PubMed DOI PMC
Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58:2322–2328. doi: 10.1128/AAC.02166-13. PubMed DOI PMC
Trivedi M, Patel V, Soman R, Rodriguez C, Singhal T. The outcome of treating ESBL infections with carbapenems vs. non carbapenem antimicrobials. J Assoc Physicians India. 2012;60:28–30. PubMed
Dupont H, Carbon C, Carlet J. Monotherapy with a broad-spectrum beta-lactam is as effective as its combination with an aminoglycoside in treatment of severe generalized peritonitis: a multicenter randomized controlled trial. The Severe Generalized Peritonitis Study Group. Antimicrob Agents Chemother. 2000;44:2028–2033. doi: 10.1128/AAC.44.8.2028-2033.2000. PubMed DOI PMC
Heizmann WR, Löschmann PA, Eckmann C, Von Eiff C, Bodmann KF, Petrik C. Clinical efficacy of tigecycline used as monotherapy or in combination regimens for complicated infections with documented involvement of multiresistant bacteria. Infection. 2015;43:37–43. doi: 10.1007/s15010-014-0691-4. PubMed DOI PMC
McGovern PC, Wible M, El-Tahtawy A, Biswas P, Meyer RD. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int J Antimicrob Agents. 2013;41:463–467. doi: 10.1016/j.ijantimicag.2013.01.020. PubMed DOI
Bassetti M, McGovern PC, Wenisch C, Meyer RD, Yan JL, Wible M, et al. Clinical response and mortality in tigecycline complicated intra-abdominal infection and complicated skin and soft-tissue infection trials. Int J Antimicrob Agents. 2015;46:346–350. doi: 10.1016/j.ijantimicag.2015.05.012. PubMed DOI
Montravers P, Dupont H, Bedos JP, Bret P. Tigecycline Group. Tigecycline use in critically ill patients: a multicentre prospective observational study in the intensive care setting. Intensive Care Med. 2014;40:988–997. doi: 10.1007/s00134-014-3323-7. PubMed DOI PMC
Eckmann C, Montravers P, Bassetti M, Bodmann KF, Heizmann WR, Sánchez García M, et al. Efficacy of tigecycline for the treatment of complicated intra-abdominal infections in real-life clinical practice from five European observational studies. J Antimicrob Chemother. 2013;68 Suppl 2:ii25–ii35. PubMed
Chen YH, Hsueh PR. Changing bacteriology of abdominal and surgical sepsis. Curr Opin Infect Dis. 2012;25:590–595. doi: 10.1097/QCO.0b013e32835635cb. PubMed DOI
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682–707. doi: 10.1128/CMR.05035-11. PubMed DOI PMC
De Pascale G, Montini L, Pennisi M, Bernini V, Maviglia R, Bello G, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care. 2014;18:R90. doi: 10.1186/cc13858. PubMed DOI PMC
Falagas ME, Rafailidis PI. Re-emergence of colistin in today’s world of multidrug-resistant organisms: personal perspectives. Expert Opin Investig Drugs. 2008;17:973–981. doi: 10.1517/13543784.17.7.973. PubMed DOI
Falagas ME, Kasiakou SK, Kofteridis DP, Roditakis G, Samonis G. Effectiveness and nephrotoxicity of intravenous colistin for treatment of patients with infections due to polymyxin-only-susceptible (POS) gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 2006;25:596–599. doi: 10.1007/s10096-006-0191-2. PubMed DOI
Ruiz J, Núñez ML, Pérez J, Simarro E, Martínez-Campos L, Gómez J. Evolution of resistance among clinical isolates of Acinetobacter over a 6-year period. Eur J Clin Microbiol Infect Dis. 1999;18:292–295. doi: 10.1007/s100960050280. PubMed DOI
Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ, Barrero-Almodovar AE, Garcia-Garmendia JL, Bernabeu-WittelI M, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003;36:1111–1118. doi: 10.1086/374337. PubMed DOI
Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother. 2009;53(8):3430–3436. doi: 10.1128/AAC.01361-08. PubMed DOI PMC
Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, et al. Updated US and European Dose Recommendations for Intravenous Colistin: How Do They Perform? Clin Infect Dis. 2016;62:552–558. doi: 10.1093/cid/civ964. PubMed DOI PMC
Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents. 2014;43(1):52–59. doi: 10.1016/j.ijantimicag.2013.09.010. PubMed DOI
Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15:e732–e739. doi: 10.1016/j.ijid.2011.07.007. PubMed DOI
Reffert JL, Smith WJ. Fosfomycin for the treatment of resistant gram-negative bacterial infections. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2014;34:845–857. doi: 10.1002/phar.1434. PubMed DOI
Eckmann C, Solomkin J. Ceftolozane/tazobactam for the treatment of complicated intra-abdominal infections. Expert Opin Pharmacother. 2015;16:271–280. doi: 10.1517/14656566.2015.994504. PubMed DOI
Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI) Clin Infect Dis. 2015;60:1462–1471. PubMed PMC
Mawal Y, Critchley IA, Riccobene TA, Talley AK. Ceftazidime-avibactam for the treatment of complicated urinary tract infections and complicated intra-bdominal infections. Expert Rev Clin Pharmacol. 2015;8:691–707. doi: 10.1586/17512433.2015.1090874. PubMed DOI
Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection–results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016 [Epub ahead of print] PubMed PMC
Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and Ceftazidime/avibactam: two novel beta-lactam/beta-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46:266–271. doi: 10.1016/j.ijantimicag.2015.05.003. PubMed DOI
Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013;23:653–664. doi: 10.1101/gr.147710.112. PubMed DOI PMC
Skalweit MJ. Profile of ceftolozane/tazobactam and its potential in the treatment of complicated intra-abdominal infections. Drug Des Devel Ther. 2015;9:2919–2925. doi: 10.2147/DDDT.S61436. PubMed DOI PMC
Montravers P, Dupont H, Gauzit R, Veber B, Auboyer C, Blin P, et al. Candida as a risk factor for mortality in peritonitis. Crit Care Med. 2006;34:646–652. doi: 10.1097/01.CCM.0000201889.39443.D2. PubMed DOI
Zappella N, Desmard M, Chochillon C, Ribeiro-Parenti L, Houze S, Marmuse JP, et al. Positive peritoneal fluid fungal cultures in postoperative peritonitis after bariatric surgery. Clin Microbiol Infect. 2015;21:853.e1-3. doi: 10.1016/j.cmi.2015.05.024. PubMed DOI
Montravers P, Mira JP, Gangneux JP, Leroy O, Lortholary O. AmarCand study group. A multicentre study of antifungal strategies and outcome of Candida spp. peritonitis in intensive-care units. Clin Microbiol Infect. 2011;17:1061–1067. doi: 10.1111/j.1469-0691.2010.03360.x. PubMed DOI
Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–535. doi: 10.1086/596757. PubMed DOI PMC
Playford EG, Webster AC, Sorrell TC, Craig JC. Antifungal agents for preventing fungal infections in non-neutropenic critically ill and surgical patients: systematic review and meta-analysis of randomized clinical trials. J Antimicrob Chemother. 2006;57:628–638. doi: 10.1093/jac/dki491. PubMed DOI
Shorr AF, Chung K, Jackson WL, Waterman PE, Kollef MH. Fluconazole prophylaxis in critically ill surgical patients: a meta-analysis. Crit Care Med. 2005;33:1928–1935. doi: 10.1097/01.CCM.0000178352.14703.49. PubMed DOI
Vardakas KZ, Samonis G, Michalopoulos A, Soteriades ES, Falagas ME. Antifungal prophylaxis with azoles in high-risk, surgical intensive care unit patients: a meta-analysis of randomized, placebo-controlled trials. Crit Care Med. 2006;34:1216–1224. doi: 10.1097/01.CCM.0000208357.05675.C3. PubMed DOI
Cruciani M, De Lalla F, Mengoli C. Prophylaxis of Candida infections in adult trauma and surgical intensive care patients: a systematic review and meta-analysis. Intensive Care Med. 2005;31:1479–1487. doi: 10.1007/s00134-005-2794-y. PubMed DOI
Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID Fungal Infection Study Group. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18 Suppl 7:19–37. doi: 10.1111/1469-0691.12039. PubMed DOI
Knitsch W, Vincent JL, Utzolino S, François B, Dinya T, Dimopoulos G, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61(11):1671–1678. PubMed PMC
Allou N, Allyn J, Montravers P. When and how to cover for fungal infections in patients with severe sepsis and septic shock. Curr Infect Dis Rep. 2011;13:426–432. doi: 10.1007/s11908-011-0204-x. PubMed DOI
Shields RK, Nguyen MH, Press EG, Clancy CJ. Abdominal candidiasis is a hidden reservoir of echinocandin resistance. Antimicrob Agents Chemother. 2014;58:7601–7605. doi: 10.1128/AAC.04134-14. PubMed DOI PMC
Müller M, Dela Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48:1441–1453. doi: 10.1128/AAC.48.5.1441-1453.2004. PubMed DOI PMC
Gonzalez D, Schmidt S, Derendorf H. Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev. 2013;26:274–288. doi: 10.1128/CMR.00092-12. PubMed DOI PMC
Seguin P, Verdier MC, Chanavaz C, Engrand C, Laviolle B, Donnio PY, et al. Plasma and peritoneal concentration following continuous infusion of cefotaxime in patients with secondary peritonitis. J Antimicrob Chemother. 2009;63:564–567. doi: 10.1093/jac/dkn522. PubMed DOI
Buijk SL, Gyssens IC, Mouton JW, Van Vliet A, Verbrugh HA, Bruining HA. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother. 2002;49:121–128. doi: 10.1093/jac/49.1.121. PubMed DOI
Dahyot-Fizelier C, Lefeuvre S, Laksiri L, Marchand S, Sawchuk RJ, Couet W, et al. Kinetics of imipenem distribution into the peritoneal fluid of patients with severe peritonitis studied by microdialysis. Clin Pharmacokinet. 2010;49:323–334. doi: 10.2165/11319370-000000000-00000. PubMed DOI
Karjagin J, Lefeuvre S, Oselin K, Kipper K, Marchand S, Tikkerberi A, et al. Pharmacokinetics of meropenem determined by icrodialysis in the peritoneal fluid of patients with severe peritonitis associated with septic shock. Clin Pharmacol Ther. 2008;83:452–459. doi: 10.1038/sj.clpt.6100312. PubMed DOI
Levison ME. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am. 2004;18:451–465. doi: 10.1016/j.idc.2004.04.012. PubMed DOI
Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509. doi: 10.1016/S1473-3099(14)70036-2. PubMed DOI PMC
Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc. 2011;86:156–167. doi: 10.4065/mcp.2010.0639. PubMed DOI PMC
Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock-does the dose matter? Crit Care. 2009;13:214. doi: 10.1186/cc7774. PubMed DOI PMC
Lau WK, Mercer D, Itani KM, Nicolau DP, Kuti JL, Mansfield D, et al. Randomized, open-label, comparative study of piperacillin-tazobactam administered by continuous infusion versus intermittent infusion for treatment of hospitalized patients with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2006;50:3556–3561. doi: 10.1128/AAC.00329-06. PubMed DOI PMC
Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al. A Multicenter Randomized Trial of Continuous versus Intermittent beta-lactam Infusion in Severe Sepsis. Am J Respir Crit Care Med. 2015;192:1298–1305. doi: 10.1164/rccm.201505-0857OC. PubMed DOI
Lodise TP, Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44:357–363. doi: 10.1086/510590. PubMed DOI
Lorente L, Jiménez A, Martín MM, Iribarren JL, Jiménez JJ, Mora ML. Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents. 2009;33:464–468. doi: 10.1016/j.ijantimicag.2008.10.025. PubMed DOI
Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med. 1996;124:717–725. doi: 10.7326/0003-4819-124-8-199604150-00003. PubMed DOI
Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42:520–527. doi: 10.1097/CCM.0000000000000029. PubMed DOI
Gladman MA, Knowles CH, Gladman LJ, Payne JG. Intra-operative culture in appendicitis: traditional practice challenged. Ann R Coll Surg Engl. 2004;86:196–201. doi: 10.1308/003588404323043346. PubMed DOI PMC
Davies HO, Alkhamesi NA, Dawson PM. Peritoneal fluid culture in appendicitis: review in changing times. Int J Surg. 2010;8:426–429. doi: 10.1016/j.ijsu.2010.06.016. PubMed DOI
Marchese A, Esposito S, Barbieri R, Bassetti M, Debbia E. Does the adoption of EUCAST susceptibility breakpoints affect the selection of antimicrobials to treat acute community-acquired respiratory tract infections? BMC Infect Dis. 2012;12:181. doi: 10.1186/1471-2334-12-181. PubMed DOI PMC
Wolfensberger A, Sax H, Weber R, Zbinden R, Kuster SP, Hombach M. Change of antibiotic susceptibility testing guidelines from CLSI to EUCAST: influence on cumulative hospital antibiograms. PLoS One. 2013;8 doi: 10.1371/journal.pone.0079130. PubMed DOI PMC
Van der Bij AK, Van Dijk K, Muilwijk J, Thijsen SF, Notermans DW, De Greeff S, et al. Clinical breakpoint changes and their impact on surveillance of antimicrobial resistance in Escherichia coli causing bacteraemia. Clin Microbiol Infect. 2012;18:E466–E472. doi: 10.1111/j.1469-0691.2012.03996.x. PubMed DOI
Polsfuss S, Bloemberg GV, Giger J, Meyer V, Hombach M. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum beta-lactamase production in clinical Enterobacteriaceae isolates. J Antimicrob Chemother. 2012;67:159–166. doi: 10.1093/jac/dkr400. PubMed DOI
Hombach M, Mouttet B, Bloemberg GV. Consequences of revised CLSI and EUCAST guidelines for antibiotic susceptibility patterns of ESBL- and AmpC beta-lactamase-producing clinical Enterobacteriaceae isolates. J Antimicrob Chemother. 2013;68:2092–2098. doi: 10.1093/jac/dkt136. PubMed DOI
Andersen BR, Kallehave FL, Andersen HK. Antibiotics versus placebo for prevention of postoperative infection after appendicectomy. Cochrane Database Syst Rev. 2005;3 PubMed PMC
Mazeh H, Mizrahi I, Dior U, Simanovsky N, Shapiro M, Freund HR, et al. Role of antibiotic therapy in mild acute calculus cholecystitis: a prospective andomized controlled trial. World J Surg. 2012;36:1750–1759. doi: 10.1007/s00268-012-1572-6. PubMed DOI
Regimbeau JM, Fuks D, Pautrat K, Mauvais F, Haccart V, Msika S, et al. Effect of postoperative antibiotic administration on postoperative infection following cholecystectomy for acute calculous cholecystitis: a randomized clinical trial. JAMA. 2014;312:145–154. doi: 10.1001/jama.2014.7586. PubMed DOI
Bhangu A, Søreide K, Di Saverio S, Assarsson JH, Drake FT. Acute appendicitis: modern understanding of pathogenesis, diagnosis, and management. Lancet. 2015;386:1278–1287. doi: 10.1016/S0140-6736(15)00275-5. PubMed DOI
Søreide K, Thorsen K, Harrison EM, Bingener J, Møller MH, Ohene-Yeboah M, et al. Perforated peptic ulcer. Lancet. 2015;386:1288–1298. doi: 10.1016/S0140-6736(15)00276-7. PubMed DOI PMC
Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, et al. Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med. 2015;372:1996–2005. doi: 10.1056/NEJMoa1411162. PubMed DOI PMC
Riccio LM, Popovsky KA, Hranjec T, Politano AD, Rosenberger LH, Tura KC, et al. Association of excessive duration of antibiotic therapy for intra-abdominal infection with subsequent extra-abdominal infection and death: a study of 2,552 consecutive infections. Surg Infect (Larchmt) 2014;15:417–424. doi: 10.1089/sur.2012.077. PubMed DOI PMC
Hochreiter M, Köhler T, Schweiger AM, Keck FS, Bein B, von Spiegel T, et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care. 2009;13:R83. doi: 10.1186/cc7903. PubMed DOI PMC
Xiao Z, Wilson C, Robertson HL, Roberts DJ, Ball CG, Jenne CN, et al. Inflammatory mediators in intra-abdominal sepsis or injury–a scoping review. Crit Care. 2015;19:373. doi: 10.1186/s13054-015-1093-4. PubMed DOI PMC
Tschaikowsky K, Hedwig-Geissing M, Braun GG, Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6, and C-reactive protein for survival in postoperative patients with severe sepsis. J Crit Care. 2011;26:54–64. doi: 10.1016/j.jcrc.2010.04.011. PubMed DOI
Azevedo JR, Torres OJ, Czeczko NG, Tuon FF, Nassif PA, Souza GD. Procalcitonin as a prognostic biomarker of severe sepsis and septic shock. Rev Col Bras Cir. 2012;39:456–461. doi: 10.1590/S0100-69912012000600003. PubMed DOI
Schroeder S, Hochreiter M, Koehler T, Schweiger AM, Bein B, Keck FS, et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg. 2009;394:221–226. doi: 10.1007/s00423-008-0432-1. PubMed DOI
Jung B, Molinari N, Nasri M, Hajjej Z, Chanques G, Jean-Pierre H, et al. Procalcitonin biomarker kinetics fails to predict treatment response in perioperative abdominal infection with septic shock. Crit Care. 2013;17:R255. doi: 10.1186/cc13082. PubMed DOI PMC
Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. Morb Mortal Wkly Rep. 2009;58:256–60. PubMed
WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections
Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference