2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27434212
PubMed Central
PMC4951038
DOI
10.1371/journal.pone.0159269
PII: PONE-D-16-14163
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis účinky léků růst a vývoj metabolismus MeSH
- F-box proteiny genetika metabolismus MeSH
- herbicidy farmakologie MeSH
- homeostáza MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- kyselina 2,4-dichlorfenoxyoctová farmakologie MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin farmakologie MeSH
- semenáček účinky léků růst a vývoj metabolismus MeSH
- signální transdukce účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- F-box proteiny MeSH
- herbicidy MeSH
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH
- TIR1 protein, Arabidopsis MeSH Prohlížeč
The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development.
Zobrazit více v PubMed
Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61: 1029–1104. 10.1111/j.1365-313X.2010.04112.x PubMed DOI PMC
Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M. Arabidopsis auxin-resistance gene-AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 1993;364: 161–164. PubMed
Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri del Pozo CD, et al. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J. 2003;22: 3314–3325. PubMed PMC
Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. J Exp Bot. 2013;64: 2565–2577. 10.1093/jxb/ert139 PubMed DOI
Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, et al. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 2009;21: 1659–1668. 10.1105/tpc.109.066480 PubMed DOI PMC
Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms. J Exp Bot. 2013;64: 2541–2555. 10.1093/jxb/ert080 PubMed DOI PMC
Kowalczyk M, Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001;127: 1845–1853. PubMed PMC
Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72: 523–536. 10.1111/j.1365-313X.2012.05085.x PubMed DOI
Hagen G, Guilfoyle TJ. Rapid induction of selective transcription by auxins. Mol Cell Biol. 1985;5: 1197–1203. PubMed PMC
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005;17: 616–627. PubMed PMC
Bartel B, Fink GR. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 1995;23: 1745–1748. PubMed
Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 1999;11: 365–376. PubMed PMC
Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135: 978–988. PubMed PMC
Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, et al. An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 2006;174: 1841–1857. PubMed PMC
Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, et al. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J. 2004;37: 471–483. PubMed
Ljung K. Auxin metabolism and homeostasis during plant development. Development 2013;140: 943–950. 10.1242/dev.086363 PubMed DOI
Staswick PE. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 2009;150: 1310–1321. 10.1104/pp.109.138529 PubMed DOI PMC
Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, et al. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 2001; 25: 213–221. PubMed
Mithila J, Hall JCH, Johnson WG, Kelley KB, Riechers DE. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011;59: 445–457.
Grossmann K. Auxin herbicides, current status of mechanism and mode of action. Pest Manag Sci. 2010;66: 113–120. 10.1002/ps.1860 PubMed DOI
Sterling TM, Hall JC. Mechanism of action of natural auxins and the auxinic herbicides In: Roe RM, Burton JD, Kuhr RJ, editors. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS Press; 1997. pp. 111–141.
Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A. 2009;106: 22540–22545. 10.1073/pnas.0911967106 PubMed DOI PMC
Feung CS, Loerch SL, Hamilton RH, Mumma RO. Comparative metabolic fate of 2,4-dichlorophenoxyacetic acid in plants and plant tissue culture. J Agric Food Chem. 1978;26: 1064–1067.
Loos MA. Phenoxyalkanoic Acids In: Kearney PC, Kaufman DD, editors. Herbicides: Chemistry, Degradation, and Mode of Action. New York: Dekker; 1975. pp. 1–128.
Hamburg A, Puvanesarajah V, Burnett TJ, Barnekow DE, Premkumar ND, Smith GA. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application. J Agric Food Chem. 2001;49: 146–155. PubMed
Laurent F, Debrauwer L, Rathahao E, Scalla R. 2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum). J Agric Food Chem. 2000;48: 5307–5311. PubMed
Feung CS, Hamilto RH, Mumma RO. Metabolism of 2,4-Dichlorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures. J Agric Food Chem. 1973;21: 637–640. PubMed
Davidonis GH, Hamilton RH, Mumma RO. Metabolism of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in soybean root callus. Plant Physiol. 1980;66: 537–540. PubMed PMC
Davidonis GH, Hamilton RH, Vallejo RP, Buly R, Mumma RO. Biological properties of d-amino acid conjugates of 2,4-D. Plant Physiol. 1982;70: 357–360. PubMed PMC
Santos-Delgado MJ, Crespo-Corral E, Polo-Díez LM. Determination of herbicides in soil samples by gas chromatography: optimization by the simplex method. Talanta 2000;53: 367–377. PubMed
Rodríguez I, Rubí E, González R, Quintana JB, Cela R. On-fibre silylation following solid-phase microextraction for the determination of acidic herbicides in water samples by gas chromatography. Anal Chim Acta 2005;537: 259–266.
Zanella R, Prestes OD, Friggi CA, Martins ML, Adaime MB. Modern sample preparation methods for pesticide multiresidue determination in foods of animal origin by chromatographic-mass spectrometric techniques In: Jokanovic M, editor. The Impact of Pesticides. Cheyenne: Academy Publishing; 2012. pp. 355–379.
Koesukwiwat U, Sanguankaew K, Leepipatpiboon N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2008;626: 10–20. 10.1016/j.aca.2008.07.034 PubMed DOI
Shi X, Jin F, Huang Y, Du X, Li C, Wang M. et al. Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2012;60: 60–65. 10.1021/jf204183d PubMed DOI
Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, et al. Quo vadis plant hormone analysis? Planta 2014;240: 55–76. 10.1007/s00425-014-2063-9 PubMed DOI
Hotton SK, Eigenheer RA, Castro MF, Bostick M, Callis J. AXR1-ECR1 and AXL1-ECR1 heterodimeric RUB-activating enzymes diverge in function in Arabidopsis thaliana. Plant Mol Biol. 2011;75: 515–526. 10.1007/s11103-011-9750-8 PubMed DOI PMC
Ulmasov T, Murfet J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997;9: 1963–1971. PubMed PMC
Fránek M, Kolar V, Granatova M, Nevorankova Z. Monoclonal ELISA for 2,4-dichlorophenoxyacetic acid, Characterization of antibodies and assay optimization. J Agric Food Chem. 1994;42: 1369–1374.
Rolčík J, Lenobel R, Siglerova V, Strnad M. Isolation of melatonin by immunoaffinity chromatography. J Chromatogr B 2002;775: 9–15. PubMed
Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, et al. A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. Plant Physiol. 2007;143: 684–696. PubMed PMC
Hennion MC, Pichon V. Immuno-based sample preparation for trace analysis. J Chromatogr A 2003;1000: 29–52. PubMed
Kenny DJ, Worthington KR, Hoyes JB. Scanwave: A new approach to enhancing spectral data on a tandem quadrupole mass spectrometer. J Am Soc Mass Spectrom. 2010;21: 1061–1069. 10.1016/j.jasms.2010.02.017 PubMed DOI
Hangarter RP, Peterson MD, Good NE. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 1980;65: 761–767. PubMed PMC
De Rybel B, Audenaert D, Beeckman T, Kepinski S. The past, present, and future of chemical biology in auxin research. ACS Chem Biol. 2009;4: 987–998. 10.1021/cb9001624 PubMed DOI
Feung CS, Hamilton RH, Witham FH, Mumma RO. The relative amounts and identification of some 2,4-dichlorophenoxyacetic acid metabolites isolated from soybean cotyledon callus cultures. Plant Physiol. 1972;50: 80–86. PubMed PMC
Tam YY, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-9-acetyl-aspartate, indole-3-acetyl-glutamate and indole-3-acetyl-glucose. Plant Physiol. 2000;123: 589–595. PubMed PMC
Bandurski RS, Cohen JD, Slovin JP, Reinecke DM. Auxin biosynthesis and metabolism In: Davies PJ, editor. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer Academic Publishers; 1995. pp. 39–65.
Smulders MJM, van de Ven ETWM, Croes AF, Wullems GJ. Metabolism of 1-naphthaleneacetic acid in explants of tobacco: Evidence for release of free hormone from conjugates. J Plant Growth Regul. 1990;9: 27–34.
Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 2011;23: 3961–3973. 10.1105/tpc.111.088047 PubMed DOI PMC
Cohen JD, Bandurski RS. Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol. 1982;33: 403–430.
Feung CS, Loerch SL, Hamilton RH, Mumma RO. Metabolism of 2,4-dichlorophenoxyacetic acid. VI. Biological properties of amino acid conjugates. J Agric Food Chem. 1974;22: 307–309. PubMed
Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot. 2011;62: 1757–1773. 10.1093/jxb/erq412 PubMed DOI
Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM . Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav. 2010;5: 1607–1612. PubMed PMC
Peat TS, Bottcher C, Newman J, Lucent D, Cowieson N, Davies C. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 2012;24: 4525–4538. 10.1105/tpc.112.102921 PubMed DOI PMC
Delbarre A, Muller P, Imhoff V, Guern J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 1996;198: 532–541. PubMed
Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 2005;1075: 159–166. PubMed
Hradecká V, Novák O, Havlíček L, Strnad M. Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. J Chromatogr B 2007;847: 162–173. PubMed
Liang Y, Zhu X, Zhao M, Liu H. Sensitive quantification of isoprenoid cytokinins in plants by selective immunoaffinity purification and high performance liquid chromatography-quadrupole-time of flight mass spectrometry. Methods 2012;56: 174–179. 10.1016/j.ymeth.2011.08.006 PubMed DOI
Vijayaraghavan SJ, Pengelly WL. Bound auxin metabolism in cultured crown-gall tissues of tobacco. Plant Physiol. 1986;80: 315–321. PubMed PMC
Kazemie M, Klämbt D. Studies on the uptake of naphthalene-1-acetic acid and its aspartic acid conjugate into wheat coleoptile tissue. Planta 1969;89: 76–81. 10.1007/BF00386497 PubMed DOI
LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B. (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem. 2002;277: 20446–20452. PubMed
Sauer M, Kleine-Vehn J. AUXIN BINDING PROTEIN1: The Outsider. Plant Cell 2011;23: 2033–2043. 10.1105/tpc.111.087064 PubMed DOI PMC
Gao Y, Zhang Y, Zhang D, Dai X, Etelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Aca Sci U S A. 2015;112: 2275–2280. PubMed PMC