2,4-D and IAA Amino Acid Conjugates Show Distinct Metabolism in Arabidopsis

. 2016 ; 11 (7) : e0159269. [epub] 20160719

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27434212

The herbicide 2,4-D exhibits an auxinic activity and therefore can be used as a synthetic and traceable analog to study auxin-related responses. Here we identified that not only exogenous 2,4-D but also its amide-linked metabolite 2,4-D-Glu displayed an inhibitory effect on plant growth via the TIR1/AFB auxin-mediated signaling pathway. To further investigate 2,4-D metabolite conversion, identity and activity, we have developed a novel purification procedure based on the combination of ion exchange and immuno-specific sorbents combined with a sensitive liquid chromatography-mass spectrometry method. In 2,4-D treated samples, 2,4-D-Glu and 2,4-D-Asp were detected at 100-fold lower concentrations compared to 2,4-D levels, showing that 2,4-D can be metabolized in the plant. Moreover, 2,4-D-Asp and 2,4-D-Glu were identified as reversible forms of 2,4-D homeostasis that can be converted to free 2,4-D. This work paves the way to new studies of auxin action in plant development.

Zobrazit více v PubMed

Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61: 1029–1104. 10.1111/j.1365-313X.2010.04112.x PubMed DOI PMC

Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M. Arabidopsis auxin-resistance gene-AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 1993;364: 161–164. PubMed

Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri del Pozo CD, et al. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J. 2003;22: 3314–3325. PubMed PMC

Sauer M, Robert S, Kleine-Vehn J. Auxin: simply complicated. J Exp Bot. 2013;64: 2565–2577. 10.1093/jxb/ert139 PubMed DOI

Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, et al. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 2009;21: 1659–1668. 10.1105/tpc.109.066480 PubMed DOI PMC

Korasick DA, Enders TA, Strader LC. Auxin biosynthesis and storage forms. J Exp Bot. 2013;64: 2541–2555. 10.1093/jxb/ert080 PubMed DOI PMC

Kowalczyk M, Sandberg G. Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol. 2001;127: 1845–1853. PubMed PMC

Novák O, Hényková E, Sairanen I, Kowalczyk M, Pospíšil T, Ljung K. Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72: 523–536. 10.1111/j.1365-313X.2012.05085.x PubMed DOI

Hagen G, Guilfoyle TJ. Rapid induction of selective transcription by auxins. Mol Cell Biol. 1985;5: 1197–1203. PubMed PMC

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005;17: 616–627. PubMed PMC

Bartel B, Fink GR. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science 1995;23: 1745–1748. PubMed

Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 1999;11: 365–376. PubMed PMC

Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135: 978–988. PubMed PMC

Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, et al. An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 2006;174: 1841–1857. PubMed PMC

Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, et al. ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J. 2004;37: 471–483. PubMed

Ljung K. Auxin metabolism and homeostasis during plant development. Development 2013;140: 943–950. 10.1242/dev.086363 PubMed DOI

Staswick PE. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 2009;150: 1310–1321. 10.1104/pp.109.138529 PubMed DOI PMC

Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, et al. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 2001; 25: 213–221. PubMed

Mithila J, Hall JCH, Johnson WG, Kelley KB, Riechers DE. Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011;59: 445–457.

Grossmann K. Auxin herbicides, current status of mechanism and mode of action. Pest Manag Sci. 2010;66: 113–120. 10.1002/ps.1860 PubMed DOI

Sterling TM, Hall JC. Mechanism of action of natural auxins and the auxinic herbicides In: Roe RM, Burton JD, Kuhr RJ, editors. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS Press; 1997. pp. 111–141.

Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A. 2009;106: 22540–22545. 10.1073/pnas.0911967106 PubMed DOI PMC

Feung CS, Loerch SL, Hamilton RH, Mumma RO. Comparative metabolic fate of 2,4-dichlorophenoxyacetic acid in plants and plant tissue culture. J Agric Food Chem. 1978;26: 1064–1067.

Loos MA. Phenoxyalkanoic Acids In: Kearney PC, Kaufman DD, editors. Herbicides: Chemistry, Degradation, and Mode of Action. New York: Dekker; 1975. pp. 1–128.

Hamburg A, Puvanesarajah V, Burnett TJ, Barnekow DE, Premkumar ND, Smith GA. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application. J Agric Food Chem. 2001;49: 146–155. PubMed

Laurent F, Debrauwer L, Rathahao E, Scalla R. 2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum). J Agric Food Chem. 2000;48: 5307–5311. PubMed

Feung CS, Hamilto RH, Mumma RO. Metabolism of 2,4-Dichlorophenoxyacetic acid. V. Identification of metabolites in soybean callus tissue cultures. J Agric Food Chem. 1973;21: 637–640. PubMed

Davidonis GH, Hamilton RH, Mumma RO. Metabolism of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in soybean root callus. Plant Physiol. 1980;66: 537–540. PubMed PMC

Davidonis GH, Hamilton RH, Vallejo RP, Buly R, Mumma RO. Biological properties of d-amino acid conjugates of 2,4-D. Plant Physiol. 1982;70: 357–360. PubMed PMC

Santos-Delgado MJ, Crespo-Corral E, Polo-Díez LM. Determination of herbicides in soil samples by gas chromatography: optimization by the simplex method. Talanta 2000;53: 367–377. PubMed

Rodríguez I, Rubí E, González R, Quintana JB, Cela R. On-fibre silylation following solid-phase microextraction for the determination of acidic herbicides in water samples by gas chromatography. Anal Chim Acta 2005;537: 259–266.

Zanella R, Prestes OD, Friggi CA, Martins ML, Adaime MB. Modern sample preparation methods for pesticide multiresidue determination in foods of animal origin by chromatographic-mass spectrometric techniques In: Jokanovic M, editor. The Impact of Pesticides. Cheyenne: Academy Publishing; 2012. pp. 355–379.

Koesukwiwat U, Sanguankaew K, Leepipatpiboon N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2008;626: 10–20. 10.1016/j.aca.2008.07.034 PubMed DOI

Shi X, Jin F, Huang Y, Du X, Li C, Wang M. et al. Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2012;60: 60–65. 10.1021/jf204183d PubMed DOI

Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, et al. Quo vadis plant hormone analysis? Planta 2014;240: 55–76. 10.1007/s00425-014-2063-9 PubMed DOI

Hotton SK, Eigenheer RA, Castro MF, Bostick M, Callis J. AXR1-ECR1 and AXL1-ECR1 heterodimeric RUB-activating enzymes diverge in function in Arabidopsis thaliana. Plant Mol Biol. 2011;75: 515–526. 10.1007/s11103-011-9750-8 PubMed DOI PMC

Ulmasov T, Murfet J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 1997;9: 1963–1971. PubMed PMC

Fránek M, Kolar V, Granatova M, Nevorankova Z. Monoclonal ELISA for 2,4-dichlorophenoxyacetic acid, Characterization of antibodies and assay optimization. J Agric Food Chem. 1994;42: 1369–1374.

Rolčík J, Lenobel R, Siglerova V, Strnad M. Isolation of melatonin by immunoaffinity chromatography. J Chromatogr B 2002;775: 9–15. PubMed

Moon J, Zhao Y, Dai X, Zhang W, Gray WM, Huq E, et al. A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis. Plant Physiol. 2007;143: 684–696. PubMed PMC

Hennion MC, Pichon V. Immuno-based sample preparation for trace analysis. J Chromatogr A 2003;1000: 29–52. PubMed

Kenny DJ, Worthington KR, Hoyes JB. Scanwave: A new approach to enhancing spectral data on a tandem quadrupole mass spectrometer. J Am Soc Mass Spectrom. 2010;21: 1061–1069. 10.1016/j.jasms.2010.02.017 PubMed DOI

Hangarter RP, Peterson MD, Good NE. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 1980;65: 761–767. PubMed PMC

De Rybel B, Audenaert D, Beeckman T, Kepinski S. The past, present, and future of chemical biology in auxin research. ACS Chem Biol. 2009;4: 987–998. 10.1021/cb9001624 PubMed DOI

Feung CS, Hamilton RH, Witham FH, Mumma RO. The relative amounts and identification of some 2,4-dichlorophenoxyacetic acid metabolites isolated from soybean cotyledon callus cultures. Plant Physiol. 1972;50: 80–86. PubMed PMC

Tam YY, Epstein E, Normanly J. Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-9-acetyl-aspartate, indole-3-acetyl-glutamate and indole-3-acetyl-glucose. Plant Physiol. 2000;123: 589–595. PubMed PMC

Bandurski RS, Cohen JD, Slovin JP, Reinecke DM. Auxin biosynthesis and metabolism In: Davies PJ, editor. Plant Hormones: Physiology, Biochemistry and Molecular Biology. Dordrecht: Kluwer Academic Publishers; 1995. pp. 39–65.

Smulders MJM, van de Ven ETWM, Croes AF, Wullems GJ. Metabolism of 1-naphthaleneacetic acid in explants of tobacco: Evidence for release of free hormone from conjugates. J Plant Growth Regul. 1990;9: 27–34.

Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, et al. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 2011;23: 3961–3973. 10.1105/tpc.111.088047 PubMed DOI PMC

Cohen JD, Bandurski RS. Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol. 1982;33: 403–430.

Feung CS, Loerch SL, Hamilton RH, Mumma RO. Metabolism of 2,4-dichlorophenoxyacetic acid. VI. Biological properties of amino acid conjugates. J Agric Food Chem. 1974;22: 307–309. PubMed

Ludwig-Müller J. Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot. 2011;62: 1757–1773. 10.1093/jxb/erq412 PubMed DOI

Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM . Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav. 2010;5: 1607–1612. PubMed PMC

Peat TS, Bottcher C, Newman J, Lucent D, Cowieson N, Davies C. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 2012;24: 4525–4538. 10.1105/tpc.112.102921 PubMed DOI PMC

Delbarre A, Muller P, Imhoff V, Guern J. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 1996;198: 532–541. PubMed

Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 2005;1075: 159–166. PubMed

Hradecká V, Novák O, Havlíček L, Strnad M. Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. J Chromatogr B 2007;847: 162–173. PubMed

Liang Y, Zhu X, Zhao M, Liu H. Sensitive quantification of isoprenoid cytokinins in plants by selective immunoaffinity purification and high performance liquid chromatography-quadrupole-time of flight mass spectrometry. Methods 2012;56: 174–179. 10.1016/j.ymeth.2011.08.006 PubMed DOI

Vijayaraghavan SJ, Pengelly WL. Bound auxin metabolism in cultured crown-gall tissues of tobacco. Plant Physiol. 1986;80: 315–321. PubMed PMC

Kazemie M, Klämbt D. Studies on the uptake of naphthalene-1-acetic acid and its aspartic acid conjugate into wheat coleoptile tissue. Planta 1969;89: 76–81. 10.1007/BF00386497 PubMed DOI

LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B. (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem. 2002;277: 20446–20452. PubMed

Sauer M, Kleine-Vehn J. AUXIN BINDING PROTEIN1: The Outsider. Plant Cell 2011;23: 2033–2043. 10.1105/tpc.111.087064 PubMed DOI PMC

Gao Y, Zhang Y, Zhang D, Dai X, Etelle M, Zhao Y. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Aca Sci U S A. 2015;112: 2275–2280. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...