Demographic history, current expansion and future management challenges of wild boar populations in the Balkans and Europe
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27436523
PubMed Central
PMC5061920
DOI
10.1038/hdy.2016.53
PII: hdy201653
Knihovny.cz E-resources
- MeSH
- Gene Frequency MeSH
- Genetic Variation * MeSH
- Genotyping Techniques MeSH
- Population Density MeSH
- Inbreeding MeSH
- Microsatellite Repeats MeSH
- Models, Genetic MeSH
- Population Dynamics MeSH
- Genetics, Population * MeSH
- Models, Statistical MeSH
- Sus scrofa genetics MeSH
- Gene Flow * MeSH
- Conservation of Natural Resources MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Balkan Peninsula MeSH
- Europe MeSH
Wild boar (Sus scrofa), one of the most widespread wildlife species, has entered a stage of continuous growth in Europe, and could even be considered a pest species. We analysed microsatellite variability in 723 wild boars from across Europe, including the northern Dinaric Balkans. Our aims were: (1) to define the population structure of wild boars in the Balkans and its relation with other European populations; (2) to estimate effective populations sizes, levels of intra- and inter-population diversity, inbreeding migration and gene flow patterns; (3) to test subpopulations for bottlenecks; (4) to interpret these results in light of current knowledge about the demographic history of wild boars in Europe; and (5) to discuss the relevance of these findings for management and conservation. Strong population structuring was observed and 14 subpopulations were revealed. High genetic diversity was found, and besides the well-known identity of the Italian populations of Sardinia and Castelporziano, we bring new insights into other potential relevant, refugial populations such as Littoral Slovenia, South Portugal, North-western Iberia and an entire cluster in the Balkans. There was evidence of gene flow going from these refugial subpopulations towards less peripheral and more admixed subpopulations. Recent population bottlenecks and expansions were detected, mostly in the peninsular refuge subpopulations. The results are consistent with the fluctuations of wild boar numbers in Europe since the beginning of the twentieth century. These results should be taken into account in future conservation and management plans for wild boar populations in Europe.
See more in PubMed
Alcala A, Goudet J, Vuilleumier S. (2014). On the transition of genetic differentiation from isolation to panmixia: what we can learn from GST and D. Theor Pop Biol 93: 75–84. PubMed
Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N et al. (2012). The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39: 713–723.
Alves PC, Pinheiro I, Godinho R, Vicente J, Gortázar C, Scandura M. (2010). Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa in Southwestern Europe. Biol J Linn Soc 101: 797–822.
Apollonio M, Andersen R, Putman R. (2010) European Ungulates and Their Management in the 21st Century. Cambridge University Press: Cambridge, UK.
Apollonio M, Randi E, Toso S. (1988). The systematics of the wild boar (Sus scrofa L.) in Italy. Boll Zool 55: 213–221.
Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992). Single-locus and multilocus DNA fingerprint. In: Hoelzel AR (ed). Molecular Genetic Analysis of Populations, a Practical Approach. IRL Press: Oxford. pp 225–270.
Caratti S, Rossi L, Sona B, Origlia S, Viara S, Martano G et al. (2010). Analysis of 11 tetrameric STRs in wild boars for forensic purposes. Forensic Sci Int Genet 4: 339–342. PubMed
Cornuet JM, Luikart G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014. PubMed PMC
De Beaux O, Festa E. (1927). La ricomparsa del cinghiale nell'Italia settentrionale occidentale. Mem Soc It Sc Nat Mus Civ S.N. Milano 9: 265–342.
Dupanloup I, Schneider S, Excoffier L. (2002). A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 2571–2581. PubMed
Earl DA, vonHoldt BM. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361.
Evanno G, Regnaut S, Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. PubMed
Excoffier L, Lischer HEL. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. PubMed
Falush D, Stephens M, Pritchard JK. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164: 1567–1587. PubMed PMC
Falush D, Stephens M, Pritchard JK. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7: 574–578. PubMed PMC
Feliner GN. (2011). Southern European glacial refugia: a tale of tales. Taxon 60: 365–372.
Ferreira E, Souto L, Soares AMVM, Fonseca C. (2006). Genetic structure of the wild boar (Sus scrofa L.) population in Portugal. Wildl Biol Pract 2: 17–25.
Ferreira E, Souto L, Soares AMVM, Fonseca C. (2009). Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. Mamm Biol 74: 274–285.
Fonseca C. (2004) Population dynamics and management of wild boar (Sus scrofa L.) in Central Portugal and Southeastern Poland. PhD thesis University of Aveiro: Portugal.
Fonseca C, Torres RT, Santos JPV, Vingada J, Apollonio M (2014). Challenges in the management of cross-border populations of ungulates. In: Putman R, Apollonio M (eds). Behaviour and Management of European Ungulates. Whittles Publishing: Scotland, UK.
Ford MJ. (2002). Applications of selective neutrality tests to molecular ecology. Mol Ecol 11: 1245–1262. PubMed PMC
Frank BF, Monaco A, Bath AJ. (2015). Beyond standard wildlife management: a pathway to encompass human dimension findings in wild boar management. Eur J Wildl Res 61: 723–730.
Frantz L, Meijaard E, Gongora J, Haile J, Groenen MAM, Larson G. (2016). The evolution of suidae. Annu Rev Anim Biosci 4: 61–85. PubMed
Frantz LAF, Schraiber JG, Madsen O, Megens H-J, Cagan A, Bosse M et al. (2015). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 47: 1141–1148. PubMed
Garza JC, Williamson EG. (2001). Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10: 305–318. PubMed
Goedbloed DJ, Megens HJ, Van Hooft P, Herrero-Medrano JM, Lutz W, Alexandri P et al. (2013). Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22: 856–866. PubMed
Gomez A, Lunt DH (2007). Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds). Phylogeography of Southern European Refugia. Springer: Dordrecht. pp 155–188.
Hubisz MJ, Falush D, Stephens M, Pritchard JK. (2009). Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9: 1322–1332. PubMed PMC
Iacolina L, Scandura M, Goedbloed DJ, Alexandri P, Crooijmans RPMA, Larson G et al. (2016). Genomic diversity and differentiation of a managed island wild boar population. Heredity 116: 60–67. PubMed PMC
Imperio S, Ferrante M, Grignetti A, Santini G, Focardi S. (2010). Investigating population dynamics in ungulates: do hunting statistics make up a good index of population abundance? Wildlife Biol 16: 205–214.
Jost L. (2008). GST and its relatives do not measure differentiation. Mol Ecol 17: 4015–4026. PubMed
Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA. (2013). diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Eco Evol 4: 782–788.
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15: 1179–1191. PubMed PMC
Koutsogiannouli EA, Moutou KA, Sarafidou T, Stamatis C, Mamuris Z. (2010). Detection of hybrids between wild boars (Sus scrofa scrofa and domestic pigs (Sus scrofa f. domestica in Greece, using the PCR-RFLP method on melanocortin-1 receptor (MC1R) mutations. Mamm Biol 75: 69–73.
Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE et al. (2014). Contemporary genetic structure, phylogeography and past demographic processes of wild boar Sus scrofa population in Central and Eastern Europe. PLoS One 9: e91401. PubMed PMC
Linnel J, Zachos F (2007). Status and distribution patterns of European ungulates: genetics, population history and conservation. In: Putman R, Apollonio M, Andersen R (eds). Ungulate Management in Europe: Problems and Practices. Cambridge University Press: Cambridge, UK. pp 12–53.
Lowe WH, Muhlfeld CC, Allendorf FW. (2015). Spatial sorting promotes the spread of maladaptive hybridization. Trends Ecol Evol 30: 456–462. PubMed
Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220. PubMed
Massei G, Genov P. (2000) Il Cinghiale. Calderini Edagricole: Bologna.
Massei G, Kindberg J, Licoppe A, Gačić D, Šprem N, Kamler J et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71: 492–500. PubMed
Monaco A, Carnevali L, Riga F, Toso S (2007). Il cinghiale sull'arco alpino: status e gestione delle popolazioni. In: Hauffe HC, Crestanello B, Monaco A (eds). Il Cinghiale Sull'arco Alpino: Status e Gestione. Report no. 38 del Centro di Ecologia Alpina: Torino, Italy. pp 5–24.
Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 3321–3323. PubMed PMC
Nei M, Tajima F. (1981). Genetic drift and estimation of effective population size. Genetics 98: 625–640. PubMed PMC
Nikolov IS, Gum B, Markov G, Kuehn R. (2009). Population genetic structure of wild boar Sus scrofa in Bulgaria as revealed by microsatellite analysis. Acta Theriol 54: 193–205.
Pritchard JK, Stephens M, Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed PMC
R Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available at http://www.R-project.org/.
Rice WR. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225. PubMed
Saez-Royuela C, Telleria JL. (1986). The increased population of the wild boar (Sus scrofa L.) in Europe. Mamm Rev 16: 97–101.
Sambrook JF, Russell DW. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.
Scandura M, Iacolina L, Apollonio M. (2011. a). Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization. Mamm Rev 41: 125–137.
Scandura M, Iacolina L, Cossu A, Apollonio M. (2011. b). Effects of human perturbation on the genetic make-up of an island population: the case of the Sardinian wild boar. Heredity 106: 1012–1020. PubMed PMC
Scandura M, Iacolina L, Crestanello B, Pecchioli E, di Benedetto MF, Russo V et al. (2008). Ancient vs. recent processes as factors shaping genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 17: 1745–1762. PubMed
Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW et al. (2015). Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30: 78–87. PubMed
Sila A, Koren I. (2010) Wild boar on the western border - the problems of the population and managing it. 2nd Slovenian-Croatian consultations on the management of wild animals: wild boar: Velenje, Slovenia. 17–18 September 2010. pp 72–76.
Slatkin M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279. PubMed
Sprem N, Safner T, Treer T, Florijancic T, Jurić J, Cubric-Curic V et al. (2016). Are the dinaric mountains a boundary between continental and mediterranean wild boar populations in Croatia? Eur J Wildl Res 62: 167–177.
Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D. (2016). Directional genetic differentiation and relative migration. Ecol Evol 6: 3461–3475. PubMed PMC
Szpiech ZA, Jakobsson M, Rosenberg NA. (2008). ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24: 2498–2504. PubMed PMC
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. (2004). Micro-checker: a software for identifying and correcting genotyping errors in microsatellite data. Mol Eco Notes 4: 535–538.
Veličković N, Djan M, Ferreira E, Stergar M, Obreht D, Maletić V et al. (2015). From north to south and back: the role of the Balkans and other southern peninsulas in the recolonization of Europe by wild boar. J Biogeogr 42: 716–728.
Veličković N, Djan M, Obreht D, Vapa L. (2012). Population genetic structure of wild boars in the West Balkan region. Russ J Genet 48: 859–863. PubMed
Vernesi C, Crestanello B, Pecchioli E, Tartari D, Caramelli D, Hauffe H et al. (2003). The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa: a microsatellite analysis. Mol Ecol 12: 585–595. PubMed
Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC et al. (2014). Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41: 987–998.
Vingada J, Fonseca C, Cancela J, Ferreira J, Eira C (2007). Ungulates and their management in Portugal. In: Apollonio M, Andersen R, Putman RJ (eds). European Ungulates and Their Management in the 21st Century. Cambridge University Press: Cambridge, UK. pp 392–418.
Waples RS, Do C. (2008). LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Eco Res 8: 753–756. PubMed
Williamson-Natesan EG. (2005). Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6: 551–562.
Wright S (2007). Evolution and the Genetics of Populations. Vol. 4Variability Within and Among Natural Populations. University of Chicago Press: Chicago.
Yue GH, Beeckmann P, Geldermann H. (2002). Mutation rates at swine microsatellite loci. Genetica 114: 113–119. PubMed