Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic

. 2017 Jan ; 166 (Pt 2) : 398-402. [epub] 20160718

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27440462
Odkazy

PubMed 27440462
DOI 10.1016/j.jenvrad.2016.07.008
PII: S0265-931X(16)30238-7
Knihovny.cz E-zdroje

The purpose of the study is to determine radon-prone areas in the Czech Republic based on the measurements of indoor radon concentration and independent predictors (rock type and permeability of the bedrock, gamma dose rate, GPS coordinates and the average age of family houses). The relationship between the mean observed indoor radon concentrations in monitored areas (∼22% municipalities) and the independent predictors was modelled using a bagged neural network. Levels of mean indoor radon concentration in the unmonitored areas were predicted using the bagged neural network model fitted for the monitored areas. The propensity to increased indoor radon was determined by estimated probability of exceeding the action level of 300Bq/m3.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...