Associations between Fundamental Movement Skills, Physical Fitness, Motor Competency, Physical Activity, and Executive Functions in Pre-School Age Children: A Systematic Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
364021
Charles University
Cooperatio Social Science
Charles University
PubMed
35884044
PubMed Central
PMC9315971
DOI
10.3390/children9071059
PII: children9071059
Knihovny.cz E-zdroje
- Klíčová slova
- association, fundamental movement skill, motor competence, physical activity, physical fitness, preschool,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Previous empirical research and reviews have suggested that the level of fundamental movement skills (FMS), motor competence (MC), physical activity (PA), or physical fitness seem to directly influence the executive functions (EFs) in school aged children. However, there is no available comprehensive review of whether the exact links between motor constructs and EFs also exist in the preschool period, even though preschool age is the critical period for developing EFs. Therefore, this study aimed to systematically review the evidence on the association between FMS, MC, PA, PF, and EFs. To conduct the systematic review, we utilized searches using Web of Science, PubMed, and EBSCO (including SPORTDiscus and Academic Search Premier). We included studies that examined associations between one or all of the four motor constructs with EFs among typically developing children aged 3-6 years, published between January 2010 and October 2021. A total of 15 studies met the inclusion criteria, of which four were randomized controlled trials, three were longitudinal studies, four were cohort studies, and four were cross-sectional studies. We found weak correlations or insufficient evidence for associations between FMS, PA, PF, and EFs. However, there was strong evidence for a moderately strong association between MC and working memory, a moderately weak association between MC and inhibition, and inadequate evidence for a weak to moderate association between MC and shifting. In addition, only half of the included studies were methodologically high-quality studies. Specifically, a questionable design selection of research samples might bias the strength of evaluated associations. We also found significant diversity in the diagnostic tools used for assessing and measuring motor and EFs domains. Our findings support the assumption that motor competencies level, which contains physical capacity and cognitive components, could be significantly linked to EF development from a preschool age. Therefore, we suggest that future studies focus more on clinical trial design, combining movement interventions with different levels of cognitive components, for the purposive development of EFs in preschool-aged children.
Centre for Intelligent Healthcare Coventry University Coventry CV1 5FB UK
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Zobrazit více v PubMed
Dwyer T., Sallis J.F., Blizzard L., Lazarus R., Dean K. Relation of Academic Performance to Physical Activity and Fitness in Children. Pediatric Exerc. Sci. 2001;13:225–237. doi: 10.1123/pes.13.3.225. DOI
Ludyga S., Koutsandréou F., Reuter E.M., Voelcker-Rehage C., Budde H. A Randomized Controlled Trial on the Effects of Aerobic and Coordinative Training on Neural Correlates of Inhibitory Control in Children. J. Clin. Med. 2019;8:184. doi: 10.3390/jcm8020184. PubMed DOI PMC
Schmidt R.A. From Principles to Practice. Human Kinetics Books; Champaign, IL, USA: 1991. Motor Learning & Performance; p. 310.
Fleishman E.A. In: The Structure and Measurement of Physical Fitness. Englewood Cliffs N.J., editor. Prentice-Hall; Hoboken, NJ, USA: 1964.
Newell K. Motor Development in Children: Aspects of Coordination and Control. Martinus Nijhoff; Leiden, The Netherlands: 1986. Constraints on the Development of Coordination.
Sugden D., Sugden L. The assessment of movement skill problems in 7- and 9-year-old children. Br. J. Educ. Psychol. 1991;61:329–345. doi: 10.1111/j.2044-8279.1991.tb00990.x. PubMed DOI
Fleishman E.A. On the relation between abilities, learning, and human performance. Am. Psychol. 1972;27:1017–1032. doi: 10.1037/h0033881. DOI
Seashore R.H. Individual differences in motor skills. J. Gen. Psychol. 1930;3:38–66. doi: 10.1080/00221309.1930.9918189. DOI
Siscovick D.S., Laporte R.E., Newman J.H., Iverson D.C., Fielding J.E. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126. PubMed PMC
Ortega F.B., Ruiz J.R., Castillo M.J., Sjöström M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774. PubMed DOI
Ulrich D.A., Sanford C.B. Test of Gross Motor Development. Examiner’s Manual; Austin, TX, USA: 2000.
Luz C., Rodrigues L.P., Almeida G., Cordovil R. Development and validation of a model of motor competence in children and adolescents. J. Sci. Med. Sport. 2016;19:568–572. doi: 10.1016/j.jsams.2015.07.005. PubMed DOI
Stodden D.F., Goodway J.D., Langendorfer S.J., Roberton M.A., Rudisill M.E., Garcia C., Garcia L.E. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. Quest. 2008;60:290–306. doi: 10.1080/00336297.2008.10483582. DOI
Dumith S.C., Hallal P.C., Reis R.S., Kohl H.W. Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev. Med. 2011;53:24–28. doi: 10.1016/j.ypmed.2011.02.017. PubMed DOI
Rarick G.L., George L., Adams F.H. Physical Activity; Human Growth and Development. Academic Press; Cambridge, MA, USA: 1973. p. 406.
Robinson L.E., Stodden D.F., Barnett L.M., Lopes V.P., Logan S.W., Rodrigues L.P., D’Hondt E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015;45:1273–1284. doi: 10.1007/s40279-015-0351-6. PubMed DOI
Silva C., Annamalai K. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level. Entropy. 2008;10:100–123. doi: 10.3390/entropy-e10020100. DOI
Lezak M.D., Howieson D.B., Loring D.W., Fischer J.S. Neuropsychological Asessment. 4th ed. Oxford University Press; Oxford, MI, USA: 2004. p. 1016.
Oberer N., Gashaj V., Roebers C.M. Executive functions, visual-motor coordination, physical fitness and academic achievement: Longitudinal relations in typically developing children. Hum. Mov. Sci. 2018;58:69–79. doi: 10.1016/j.humov.2018.01.003. PubMed DOI
Diamond A. Executive Functions. Annu. Rev. Psychol. 2013;64:135. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC
Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000;41:49–100. doi: 10.1006/cogp.1999.0734. PubMed DOI
Clarke A.D.B., Clarke A.M., Reiman S. Cognitive And Social Changes In The Feebleminded—Three Further Studies. Br. J. Psychol. 1958;49:144–157. doi: 10.1111/j.2044-8295.1958.tb00650.x. PubMed DOI
Piaget J. The Child’s Conception of the World. Routledge & K. Paul; London, UK: 1929. p. 379.
Berndt T.J., Perry T.B. Child Development. McGraw-Hill Higher Education Co.; Irvine, CA, USA: 1996. p. 272.
Robertson S.S., Johnson S.L., Masnick A.M., Weiss S.L. Robust coupling of body movement and gaze in young infants. Dev. Psychobiol. 2007;49:208–215. doi: 10.1002/dev.20201. PubMed DOI
Adolph K.E. Learning to Move. Curr. Dir. Psychol. Sci. 2008;17:213–218. doi: 10.1111/j.1467-8721.2008.00577.x. PubMed DOI PMC
Best J.R. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. 2010;30:331–551. doi: 10.1016/j.dr.2010.08.001. PubMed DOI PMC
Lehto J.E., Juujärvi P., Kooistra L., Pulkkinen L. Dimensions of executive functioning: Evidence from children. Br. J. Dev. Psychol. 2003;21:59–80. doi: 10.1348/026151003321164627. DOI
Leisman G., Moustafa A.A., Shafir T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health. 2016;4:49. doi: 10.3389/fpubh.2016.00094. PubMed DOI PMC
Ludyga S., Gerber M., Brand S., Pühse U., Colledge F. Effects of Aerobic Exercise on Cognitive Performance Among Young Adults in a Higher Education Setting. Res. Q. Exerc. Sport. 2018;89:164–172. doi: 10.1080/02701367.2018.1438575. PubMed DOI
Hillman C.H., Erickson K.I., Kramer A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008;9:58–65. doi: 10.1038/nrn2298. PubMed DOI
Howie E.K., Pate R.R. Physical activity and academic achievement in children: A historical perspective. J. Sport Health Sci. 2012;1:160–169. doi: 10.1016/j.jshs.2012.09.003. DOI
Chaddock-Heyman L., Hillman C.H., Cohen N.J., Kramer A.F., III The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monogr. Soc. Res. Child. Dev. 2014;79:25–50. doi: 10.1111/mono.12129. PubMed DOI
Whooten R., Kerem L., Stanley T. Physical Activity in Adolescents and Children and Relationship to Metabolic Health. Curr. Opin. Endocrinol. Diabetes Obes. 2019;26:25–31. doi: 10.1097/MED.0000000000000455. PubMed DOI PMC
Davis N.M., Ford G.W., Anderson P.J., Doyle L.W. Developmental coordination disorder at 8 years of age in a regional cohort of extremely-low-birthweight or very preterm infants. Dev. Med. Child Neurol. 2007;49:325–330. doi: 10.1111/j.1469-8749.2007.00325.x. PubMed DOI
Ellemberg D., St-Louis-Deschênes M. The effect of acute physical exercise on cognitive function during development. Psychol. Sport Exerc. 2010;11:122–126. doi: 10.1016/j.psychsport.2009.09.006. DOI
Esmaeilzadeh S., Ebadollahzadeh K. Physical Fitness, Physical Activity and Sedentary Activities of 7 to 11 Year Old Boys with Different Body Mass Indexes. Asian J. Sports Med. 2012;3:105–112. doi: 10.5812/asjsm.34709. PubMed DOI PMC
Tomporowski P.D., Davis C.L., Miller P.H., Naglieri J.A. Exercise and children’s intelligence, cognition, and academic achievement. Educ. Psychol. Rev. 2008;20:111–131. doi: 10.1007/s10648-007-9057-0. PubMed DOI PMC
Stein M., Auerswald M., Ebersbach M. Relationships between Motor and Executive Functions and the Effect of an Acute Coordinative Intervention on Executive Functions in Kindergartners. Front. Psychol. 2017;8:859. doi: 10.3389/fpsyg.2017.00859. PubMed DOI PMC
Wen X., Zhang Y., Gao Z., Zhao W., Jie J., Bao L. Effect of Mini-Trampoline Physical Activity on Executive Functions in Preschool Children. BioMed Res. Int. 2018;2018:2712803. doi: 10.1155/2018/2712803. PubMed DOI PMC
Barnett L.M., van Beurden E., Morgan P.J., Brooks L.O., Beard J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health. 2009;44:252–259. doi: 10.1016/j.jadohealth.2008.07.004. PubMed DOI
Maurer M.N., Roebers C.M. Towards a better understanding of the association between motor skills and executive functions in 5- to 6-year-olds: The impact of motor task difficulty. Hum. Mov. Sci. 2019;66:607–620. doi: 10.1016/j.humov.2019.06.010. PubMed DOI
Mavilidi M.F., Okely A.D., Chandler P., Cliff D.P., Paas F. Effects of Integrated Physical Exercises and Gestures on Preschool Children’s Foreign Language Vocabulary Learning. Educ. Psychol. Rev. 2015;27:413–426. doi: 10.1007/s10648-015-9337-z. DOI
Mulvey K.L., Taunton S., Pennell A., Brian A. Head, Toes, Knees, SKIP! Improving Preschool Children’s Executive Function Through a Motor Competence Intervention. J. Sport Exerc. Psychol. 2018;40:233–239. doi: 10.1123/jsep.2018-0007. PubMed DOI
Veraksa A., Tvardovskaya A., Gavrilova M., Yakupova V., Musálek M. Associations Between Executive Functions and Physical Fitness in Preschool Children. Front. Psychol. 2021;12:3282. doi: 10.3389/fpsyg.2021.674746. PubMed DOI PMC
Völgyi E., Rezaie R. Physical Activity, Body Composition and Resting Cortical Activity in Preschool Children. International. [(accessed on 15 December 2021)];J. Sch. Cogn. Psychol. 2015 2:124–129. Available online: https://www.omicsonline.com/open-access/physical-activity-body-composition-and-resting-cortical-activity-in-preschoolchildren-ijscp-1000124.php?aid=55776.
Zysset A.E., Kakebeeke T.H., Messerli-Bürgy N., Meyer A.H., Stülb K., Leeger-Aschmann C.S., Schmutz E.A., Arhab A., Ferrazzini V., Kriemler S., et al. The validity of parental reports on motor skills performance level in preschool children: A comparison with a standardized motor test. Eur. J. Pediatr. 2018;177:715–722. doi: 10.1007/s00431-017-3078-6. PubMed DOI PMC
Bidzan-Bluma I., Lipowska M. Physical Activity and Cognitive Functioning of Children: A Systematic Review. Int. J. Env. Res. Public Health. 2018;15:800. doi: 10.3390/ijerph15040800. PubMed DOI PMC
Carson V., Hunter S., Kuzik N., Wiebe S.A., Spence J.C., Friedman A., Slater L., Hinkley T. Systematic review of physical activity and cognitive development in early childhood. J. Sci. Med. Sport. 2016;19:573–578. doi: 10.1016/j.jsams.2015.07.011. PubMed DOI
Zeng N., Ayyub M., Sun H., Wen X., Xiang P., Gao Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. BioMed Res. Int. 2017;2017:2760716. doi: 10.1155/2017/2760716. PubMed DOI PMC
Singh A.S., Saliasi E., van den Berg V., Uijtdewilligen L., de Groot R.H.M., Jolles J., Andersen L.B., Bailey R., Chang Y.-K., Diamond A., et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 2019;53:640–647. doi: 10.1136/bjsports-2017-098136. PubMed DOI
Van der Fels I.M.J., Te Wierike S.C.M., Hartman E., Elferink-Gemser M.T., Smith J., Visscher C. The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: A systematic review. J. Sci. Med. Sport. 2015;18:697–703. doi: 10.1016/j.jsams.2014.09.007. PubMed DOI
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;29:89. PubMed PMC
Sirriyeh R., Lawton R., Gardner P., Armitage G. Reviewing studies with diverse designs: The development and evaluation of a new tool. J. Eval. Clin. Pract. 2012;18:746–752. doi: 10.1111/j.1365-2753.2011.01662.x. PubMed DOI
De Croon E., Sluiter J., Kuijer P.P., Frings-Dresen M. The effect of office concepts on worker health and performance: A systematic review of the literature. Ergonomics. 2005;48:119–134. doi: 10.1080/00140130512331319409. PubMed DOI
Cook D.J., Mulrow C.D., Haynes R.B. Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann. Intern. Med. 1997;126:376–380. doi: 10.7326/0003-4819-126-5-199703010-00006. PubMed DOI
Alesi M., Costa S., Bianco A., Pepi A. A teacher-led motor programme to enhance pre-literacy and motor skills in kindergarten children. Eur. J. Dev. Psychol. 2021;18:367–381. doi: 10.1080/17405629.2020.1789860. DOI
Cook C.J., Howard S.J., Scerif G., Twine R., Kahn K., Norris S.A., Draper C.E. Associations of physical activity and gross motor skills with executive function in preschool children from low-income South African settings. [(accessed on 3 February 2022)];Dev. Sci. 2019 22:e12820. doi: 10.1111/desc.12820. Available online: https://pubmed.ncbi.nlm.nih.gov/30801916/ PubMed DOI
Kuzik N., Naylor P.J., Spence J.C., Carson V. Movement behaviours and physical, cognitive, and social-emotional development in preschool-aged children: Cross-sectional associations using compositional analyses. PLoS ONE. 2020;15:e0237945. PubMed PMC
Lehmann J., Quaiser-Pohl C., Jansen P. Correlation of motor skill, mental rotation, and working memory in 3- to 6-year-old children. Eur. J. Dev. Psychol. 2014;11:560–573. doi: 10.1080/17405629.2014.888995. DOI
Oberer N., Gashaj V., Roebers C.M. Motor skills in kindergarten: Internal structure, cognitive correlates and relationships to background variables. Hum. Mov. Sci. 2017;52:170–180. doi: 10.1016/j.humov.2017.02.002. PubMed DOI
Osorio-Valencia E., Torres-Sánchez L., López-Carrillo L., Rothenberg S.J., Schnaas L. Early motor development and cognitive abilities among Mexican preschoolers. Child Neuropsychol. A J. Norm. Abnorm. Dev. Child. Adolesc. 2018;24:1015–2105. doi: 10.1080/09297049.2017.1354979. PubMed DOI
Reisberg K., Riso E.M., Jürimäe J. Preschool physical activity and fitness predicts conceptual, verbal and perceptual skills at school. J. Sports Sci. 2021;39:1988–1995. doi: 10.1080/02640414.2021.1912451. PubMed DOI
Vandenbroucke L., Seghers J., Verschueren K., Wijtzes A.I., Baeyens D. Longitudinal Associations Between Objectively Measured Physical Activity and Development of Executive Functioning Across the Transition to First Grade. J. Phys. Act. Health. 2016;13:895–902. doi: 10.1123/jpah.2015-0708. PubMed DOI
Okely A.D., Booth M.L., Patterson J.W. Relationship of physical activity to fundamental movement skills among adolescents. Med. Sci. Sports Exerc. 2001;33:1899–1904. doi: 10.1097/00005768-200111000-00015. PubMed DOI
Zelazo P.D., Müller U. The Wiley-Blackwell Handbook of Childhood Cognitive Development. 2nd ed. Wiley-Blackwell; Oxford, UK: 2010. Executive Function in Typical and Atypical Development; pp. 574–603.
Xin F., Chen S.T., Clark C., Hong J.T., Liu Y., Cai Y.J. Relationship between Fundamental Movement Skills and Physical Activity in Preschool-aged Children: A Systematic Review. Int. J. Env. Res. Public Health. 2020;17:3566. doi: 10.3390/ijerph17103566. PubMed DOI PMC
Pan C.Y., Chu C.H., Tsai C.L., Sung M.C., Huang C.Y., Ma W.Y. The impacts of physical activity intervention on physical and cognitive outcomes in children with autism spectrum disorder. Autism. 2017;21:190–202. doi: 10.1177/1362361316633562. PubMed DOI
Kamijo K., Pontifex M.B., O’Leary K.C., Scudder M.R., Wu C.T., Castelli D.M., Hillman C.H. The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 2011;14:1046–1058. doi: 10.1111/j.1467-7687.2011.01054.x. PubMed DOI PMC
Zach S., Shalom E. The influence of acute physical activity on working memory. Percept. Mot. Ski. 2016;122:365–374. doi: 10.1177/0031512516631066. PubMed DOI
McVay J.C., Kane M.J. Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. J. Exp. Psychol. General. 2012;141:302–320. doi: 10.1037/a0025250. PubMed DOI PMC
Niemistö D., Finni T., Cantell M., Korhonen E., Sääkslahti A. Individual, Family, and Environmental Correlates of Motor Competence in Young Children: Regression Model Analysis of Data Obtained from Two Motor Tests. Int. J. Environ. Res. Public Health. 2020;17:2548. doi: 10.3390/ijerph17072548. PubMed DOI PMC
Himes J.H. Long-Term Longitudinal Studies and Implications for the Development of an International Growth Reference for Children and Adolescents. Food Nutr Bull. 2006;27((Suppl. 5)):S199–S211. doi: 10.1177/15648265060274S504. PubMed DOI