Relationship among some coordinative and dynamic strength capabilities and constructive and conceptual thinking among preschool-age children
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38550648
PubMed Central
PMC10973122
DOI
10.3389/fpsyg.2024.1349884
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive development, conceptual thinking, constructive thinking, motor coordination, preschool children,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Existing research underscores the positive influence of consistent physical activity, fitness, and motor coordination on school-aged children's cognitive and academic performance. However, a gap exists in fully understanding this relationship among preschoolers, a critical age group where the development of cognitive functions is significant. The study aims to expand upon existing evidence that connects motor and cognitive development by examining the correlation between specific motor coordination and physical fitness skills and the development of constructive and conceptual thinking in preschool-aged children. METHODS: Data from 56 children aged 4-5 years (mean age 4.5 ± 0.36y), comprising 30 girls and 26 boys, participated in this study. We assessed muscular strength (via standing long jump, wall toss test, flexibility), agility (4 × 5 m shuttle), cardiorespiratory fitness (20 m pacer test), and motor coordination (lateral jumping, platform shifting). Cognitive abilities were measured using the IDS-P. RESULTS: Linear regression models showed that significant predictors of constructive thinking scores were observed solely for flexibility (p = 0.02) and shifting platforms (p = 0.01). Notably, flexibility exhibited a negative relationship (β = -1.68). In the context of conceptual thinking, significant predictors (p < 0.05) included standing long jump (p = 0.01), jumping laterally (p = 0.005), shifting platforms (p = 0.001), throwing (p = 0.02). CONCLUSION: Coordination-demanding activities seem to be related considerably to conceptual thinking in preschoolers. Integrating such motor activities into preschool curricula that demand cognitive engagement can positively influence the development of cognitive functions.
College of Life Sciences Birmingham City University Birmingham United Kingdom
Faculty of Physical Education and Sport Charles University Prague Czechia
Zobrazit více v PubMed
Albuquerque M. R., Rennó G. V. C., Bruzi A. T., De Fortes L. S., Malloy-Diniz L. F. (2022). Association between motor competence and executive functions in children. Appl. Neuropsychol. Child 11, 495–503. doi: 10.1080/21622965.2021.1897814 PubMed DOI
Álvarez-Bueno C., Pesce C., Cavero-Redondo I., Sánchez-López M., Martínez-Hortelano J. A., Martínez-Vizcaíno V. (2017). The effect of physical activity interventions on Children’s cognition and metacognition: a systematic review and Meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 729–738. doi: 10.1016/j.jaac.2017.06.012, PMID: PubMed DOI
Bass R. W., Brown D. D., Laurson K. R., Coleman M. M. (2013). Physical fitness and academic performance in middle school students. Acta Paediatrica 102, 832–837. doi: 10.1111/apa.12278 PubMed DOI
Bernstein N. A. (1996). Dexterity and its development. New York: Psychology Press. doi: 10.4324/9781410603357 DOI
Boehm A. (2013). Assessment to intervention using the Boehm test of basic concepts-third edition (Boehm-3). Available at: https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/boehm-3/boehm-3-white-paper.pdf
Bogin B. (1990). The evolution of human childhood: a unique growth phase and delayed maturity allow for extensive learning and complex culture. Bioscience 40, 16–25. doi: 10.2307/1311235 DOI
Bouchard C., Shephard R. J. (1994). “Physical activity, fitness, and health: the model and key concepts” in Physical activity, fitness, and health: International proceedings and consensus statement, Eds. C. Bouchard, R. J. Shephard, and T. Stephens (Champaign, Illinois: Human Kinetics Publishers; ) 26: 77–88. doi: 10.1249/00005768-199401000-00024 DOI
Brown T. T., Jernigan T. L. (2012). Brain development during the preschool years. Neuropsychol. Rev. 22, 313–333. doi: 10.1007/s11065-012-9214-1, PMID: PubMed DOI PMC
Cadenas-Sanchez C., Martinez-Tellez B., Sanchez-Delgado G., Mora-Gonzalez J., Castro-Piñero J., Löf M., et al. . (2016). Assessing physical fitness in preschool children: feasibility, reliability and practical recommendations for the PREFIT battery. J. Sci. Med. Sport 19, 910–915. doi: 10.1016/j.jsams.2016.02.003, PMID: PubMed DOI
Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131. PMID: PubMed PMC
Chang Y.-K., Tsai Y.-J., Chen T.-T., Hung T.-M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Exp. Brain Res. 225, 187–196. doi: 10.1007/s00221-012-3360-9 PubMed DOI
Cook C. J., Howard S. J., Scerif G., Twine R., Kahn K., Norris S. A., et al. . (2019). Associations of physical activity and gross motor skills with executive function in preschool children from low-income south African settings. Dev. Sci. 22:e12820. doi: 10.1111/DESC.12820, PMID: PubMed DOI
Corbin C. B. (1984). Flexibility. Clin. Sports Med. 3, 101–117. doi: 10.1016/S0278-5919(20)31359-4 PubMed DOI
Dean D. C., O’Muircheartaigh J., Dirks H., Waskiewicz N., Lehman K., Walker L., et al. . (2014). Modeling healthy male white matter and myelin development: 3 through 60 months of age. NeuroImage 84, 742–752. doi: 10.1016/j.neuroimage.2013.09.058, PMID: PubMed DOI PMC
Donnelly J. E., Hillman C. H., Castelli D., Etnier J. L., Lee S., Tomporowski P., et al. . (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48, 1197–1222. doi: 10.1249/MSS.0000000000000901, PMID: PubMed DOI PMC
Dubois J., Dehaene-Lambertz G., Kulikova S., Poupon C., Hüppi P. S., Hertz-Pannier L. (2014). The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71. doi: 10.1016/j.neuroscience.2013.12.044, PMID: PubMed DOI
Epstein S. (1992). Coping ability, negative self-evaluation, and overgeneralization: experiment and theory. J. Pers. Soc. Psychol. 62, 826–836. doi: 10.1037/0022-3514.62.5.826, PMID: PubMed DOI
Eveland-Sayers B. M., Farley R. S., Fuller D. K., Morgan D. W., Caputo J. L. (2009). Physical fitness and academic achievement in elementary school children. J. Phys. Act. Health 6, 99–104. doi: 10.1123/jpah.6.1.99 PubMed DOI
Fleishman E. A. (1964). The structure and measurement of physical fitness. Englewood: Prentice-Hall.
Gavrilova M., Veraksa A., Leonov S., Musalek M. (2022). “Physical fitness and child development: interrelations in preschool age” in Child development in Russia: perspectives from an international longitudinal study. ed. Veraksa A. (Springer International Publishing; ), 137–158.
Gerber R. J., Wilks T., Wilks T., Erdie-Lalena C. (2010). Developmental milestones: motor development. Pediatr. Rev. 31, 267–277. doi: 10.1542/pir.31-7-267 PubMed DOI
Gómez-Pinilla F., So V., Kesslak J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience 85, 53–61. doi: 10.1016/s0306-4522(97)00576-9, PMID: PubMed DOI
Grieder S., Grob A. (2020). Exploratory factor analyses of the intelligence and development scales–2: implications for theory and practice. Assessment 27, 1853–1869. doi: 10.1177/1073191119845051, PMID: PubMed DOI
Grob A., Meyer C., Hagmann-von Arx P. (2009). Intelligence and development scales (IDS). Bern, Switzerland: Hogrefe. PubMed
Haga M., Haga M. (2008). The relationship between physical fitness and motor competence in children. Child Care Health Develop. 34, 329–334. doi: 10.1111/j.1365-2214.2008.00814.x PubMed DOI
Hagmann-von Arx P., Grob A., Petermann F., Daseking M. (2012). Concurrent validity of the HAWIK-IV and the intelligence and development scales (IDS). Zeitschrift Fur Kinder Und Jugendpsychiatrie Und Psychotherapie 40, 41–50. doi: 10.1024/1422-4917/a000148, PMID: PubMed DOI
Hagmann-von Arx P., Lemola S., Grob A. (2018). Does IQ = IQ? comparability of intelligence test scores in typically developing children. Assessment, 25, 691–701. doi: 10.1177/1073191116662911 PubMed DOI
Hagmann-von Arx P., Meyer C. S., Grob A. (2008). Intelligenz- und entwicklungsdiagnostik im Deutschen sprachraum. [intelligence and developmental scales in German-speaking countries]. Kindheit Und Entwicklung 17, 232–242. doi: 10.1026/0942-5403.17.4.232 DOI
Hagmann-von Arx P., Petermann F., Grob A. (2013). Konvergente und diskriminante Validität der WISC-IV und der Intelligence and Development Scales (IDS) bei Kindern mit Migrationshintergrund. Diagnostica 59, 170–182. doi: 10.1026/0012-1924/a000091 DOI
Harnad S. (2017). “Chapter 2 – to cognize is to categorize: cognition is categorization” in Handbook of categorization in cognitive science. eds. Cohen H., Lefebvre C.. 2nd ed (Elsevier; ), 21–54.
Horga S. (1993). Psihologija sporta Fakultet za fizičku kulturu.
Houwen S., van der Veer G., Visser J., Cantell M. (2017). The relationship between motor performance and parent-rated executive functioning in 3- to 5-year-old children: what is the role of confounding variables? Hum. Mov. Sci. 53, 24–36. doi: 10.1016/J.HUMOV.2016.12.009, PMID: PubMed DOI
Invernizzi P. L., Crotti M., Bosio A., Scurati R., Lovecchio N. (2017). Correlation between cognitive functions and motor coordination in children with different cognitive levels. Advances Physical Educ. 8, 98–115. doi: 10.4236/ape.2018.81011 DOI
Iughetti L., Casarosa E., Predieri B., Patianna V., Luisi S. (2011). Plasma brain-derived neurotrophic factor concentrations in children and adolescents. Neuropeptides 45, 205–211. doi: 10.1016/j.npep.2011.02.002 PubMed DOI
James J., Pringle A., Mourton S., Roscoe C. M. P. (2023). The effects of physical activity on academic performance in school-aged children: a systematic review. Children 10:1019. doi: 10.3390/children10061019, PMID: PubMed DOI PMC
Kalantari H.-A., Esmaeilzadeh S. (2016). Association between academic achievement and physical status including physical activity, aerobic and muscular fitness tests in adolescent boys. Environ. Health Prev. Med. 21, 27–33. doi: 10.1007/s12199-015-0495-x, PMID: PubMed DOI PMC
Kiphard E. J., Schilling F. (1974). Körperkoordinationstest für Kinder: KTK. Weinheim, Germany: Beltz Test. PubMed
Lawrence E. (1957). Review of the Child’s conception of space [review of review of the Child’s conception of space, by J. Piaget, B. Inhelder, F. J. Langdon, & J. L. Lunzer]. Br. J. Educ. Stud. 5, 187–189. doi: 10.2307/3118882 DOI
Luz C., Rodrigues L. P., Almeida G., Cordovil R. (2016). Development and validation of a model of motor competence in children and adolescents. J. Sci. Med. Sport 19, 568–572. doi: 10.1016/j.jsams.2015.07.005, PMID: PubMed DOI
Mabbott D. J., Noseworthy M., Bouffet E., Laughlin S., Rockel C. (2006). White matter growth as a mechanism of cognitive development in children. NeuroImage 33, 936–946. doi: 10.1016/j.neuroimage.2006.07.024 PubMed DOI
Malambo C., Nová A., Clark C., Musálek M. (2022). Associations between fundamental movement skills, physical fitness, motor competency, physical activity, and executive functions in pre-school age children: a systematic review. Children 9. doi: 10.3390/children9071059, PMID: PubMed DOI PMC
Malina R. M., Bouchard C., Bar-Or O. (2004). Growth, maturation, and physical activity. Champaign, IL: Human Kinetics.
Mavilidi M.-F., Okely A. D., Chandler P., Cliff D. P., Paas F. (2015). Effects of integrated physical exercises and gestures on preschool Children’s foreign language vocabulary learning. Educ. Psychol. Rev. 27, 413–426. doi: 10.1007/s10648-015-9337-z DOI
Merzenich M. M. (2001). “Cortical plasticity contributing to child development,” in Mechanisms of cognitive development: behavioral and neural perspectives, Eds. J. L. McClelland and R. S. Siegler (Lawrence Erlbaum Associates Publishers; ), 67–95. doi: 10.1076/chin.8.1.66.8716 DOI
Milosevic V., Petrovic A. (2015). Reliability of field-based tests for monitoring and assessing physical fitness in preschool children. Serb. J. Sports Sci. 9, 20–26.
Molnár D., Livingstone B. (2000). Physical activity in relation to overweight and obesity in children and adolescents. Eur. J. Pediatr. 159, S45–S55. doi: 10.1007/pl00014365 PubMed DOI
Moradi A., Damirchi E. S., Damirchi E. S., Narimani M., Esmaeilzadeh S., Dziembowska I., et al. . (2019). Association between physical and motor fitness with cognition in children. Medicina-Buenos Aires 55:7. doi: 10.3390/medicina55010007, PMID: PubMed DOI PMC
Musálek M., Sedlak P., Dvořáková H., Vážná A., Novák J., Kokštejn J., et al. . (2021). Insufficient physical fitness and deficits in basic eating habits in Normal-weight obese children are apparent from pre-school age or sooner. Nutrients 13. doi: 10.3390/nu13103464, PMID: PubMed DOI PMC
Niederer I., Kriemler S., Gut J., Hartmann T., Schindler C., Barral J., et al. . (2011). Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC Pediatr. 11:34. doi: 10.1186/1471-2431-11-34 PubMed DOI PMC
Norris E., van Steen T., Direito A., Stamatakis E. (2020). Physically active lessons in schools and their impact on physical activity, educational, health and cognition outcomes: a systematic review and meta-analysis. Br. J. Sports Med. 54, 826–838. doi: 10.1136/bjsports-2018-100502, PMID: PubMed DOI
Oakes L. M., Kovack-Lesh K. A. (2013). Infants’ visual recognition memory for a series of categorically related items. J. Cogn. Dev. 14, 63–86. doi: 10.1080/15248372.2011.645971, PMID: PubMed DOI PMC
Pellegrini A. D., Smith P. K. (1998). Physical activity play: the nature and function of a neglected aspect of play. Child Dev. 69, 577–598. doi: 10.1111/j.1467-8624.1998.tb06226.x, PMID: PubMed DOI
Piaget J. (1952). The origins of intelligence in children. New York: W. W. Norton & Co. 419. doi: 10.1037/11494-000 DOI
Piaget J. (1962). The stages of the intellectual development of the child. Bull. Menn. Clin. 26, 120–128. PubMed
Piersel W. C., McAndrews T. (1982). Concept acquisition and school Progress: an examination of the Boehm test of basic concepts. Psychol. Rep. 50, 783–786. doi: 10.2466/pr0.1982.50.3.783 DOI
Planinsec J. (2002). Relations between the motor and cognitive dimensions of preschool girls and boys. Percept. Mot. Skills 94, 415–423. doi: 10.2466/pms.2002.94.2.415 PubMed DOI
Pühse U., Gerber M. (2005). International comparison of physical education: concepts, problems, prospects. Available at: http://edoc.unibas.ch/dok/A3957737
R Core Team . (2021). R: The R Project for Statistical Computing. Available at: https://www.r-project.org/
Sternberg R. J., Wagner R. K. (1986). Practical intelligence: nature and origins of competence in the everyday world. Cambridge, England: Cambridge University Press.
Tomkinson G. R., Lang J. J., Tremblay M. S. (2019). Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 53, 478–486. doi: 10.1136/bjsports-2017-097982, PMID: PubMed DOI
Tomkinson G. R., Olds T. S. (2007). Secular changes in pediatric aerobic fitness test performance: the global picture. Med. Sport Sci. 50, 46–66. doi: 10.1159/000101075 PubMed DOI
Toomela A. (2016). What are higher psychological functions?. Integr Psychol Behav Sci. 50, 91–121. doi: 10.1007/s12124-015-9328-0 PubMed DOI
Utesch T., Bardid F., Büsch D., Strauss B. (2019). The relationship between motor competence and physical fitness from early childhood to early adulthood: a Meta-analysis. Sports Med. 49, 541–551. doi: 10.1007/s40279-019-01068-y, PMID: PubMed DOI
van der Fels I. M. J., Te Wierike S. C. M., Hartman E., Elferink-Gemser M. T., Smith J., Visscher C. (2015). The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: a systematic review. J. Sci. Med. Sport 18, 697–703. doi: 10.1016/j.jsams.2014.09.007, PMID: PubMed DOI
Veraksa A., Tvardovskaya A., Gavrilova M., Yakupova V., Musálek M. (2021). Associations between executive functions and physical fitness in preschool children. Front. Psychol. 12:3282. doi: 10.3389/FPSYG.2021.674746/BIBTEX PubMed DOI PMC
Voelcker-Rehage C. (2005). The relationship between motor and cognitive development in early childhood. Deutsche Zeitschrift Für Sportmedizin 56, 358–363.
Walhain F., van Gorp M., Lamur K. S., Veeger D. H. E. J., Ledebt A. (2016). Health-related fitness, motor coordination, and physical and sedentary activities of urban and rural children in Suriname. J. Phys. Act. Health 13, 1035–1041. doi: 10.1123/jpah.2015-0445 PubMed DOI
Wick K., Kriemler S., Granacher U. (2021). Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children. J. Strength Cond. Res. 35, 983–990. doi: 10.1519/JSC.0000000000003942, PMID: PubMed DOI
Wick K., Kriemler S., Granacher U. (2022). Associations between measures of physical fitness and cognitive performance in preschool children. BMC Sports Sci. Med. Rehabil. 14:80. doi: 10.1186/s13102-022-00470-w, PMID: PubMed DOI PMC
Zhou Z., Peverly S. T., Boehm A. E., Chongde L. (2000). American and Chinese children’s understanding of distance, time, and speed interrelations. Cogn. Dev. 15, 215–240. doi: 10.1016/S0885-2014(00)00031-9 DOI