Relationship among some coordinative and dynamic strength capabilities and constructive and conceptual thinking among preschool-age children

. 2024 ; 15 () : 1349884. [epub] 20240314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38550648

BACKGROUND: Existing research underscores the positive influence of consistent physical activity, fitness, and motor coordination on school-aged children's cognitive and academic performance. However, a gap exists in fully understanding this relationship among preschoolers, a critical age group where the development of cognitive functions is significant. The study aims to expand upon existing evidence that connects motor and cognitive development by examining the correlation between specific motor coordination and physical fitness skills and the development of constructive and conceptual thinking in preschool-aged children. METHODS: Data from 56 children aged 4-5 years (mean age 4.5 ± 0.36y), comprising 30 girls and 26 boys, participated in this study. We assessed muscular strength (via standing long jump, wall toss test, flexibility), agility (4 × 5 m shuttle), cardiorespiratory fitness (20 m pacer test), and motor coordination (lateral jumping, platform shifting). Cognitive abilities were measured using the IDS-P. RESULTS: Linear regression models showed that significant predictors of constructive thinking scores were observed solely for flexibility (p = 0.02) and shifting platforms (p = 0.01). Notably, flexibility exhibited a negative relationship (β = -1.68). In the context of conceptual thinking, significant predictors (p < 0.05) included standing long jump (p = 0.01), jumping laterally (p = 0.005), shifting platforms (p = 0.001), throwing (p = 0.02). CONCLUSION: Coordination-demanding activities seem to be related considerably to conceptual thinking in preschoolers. Integrating such motor activities into preschool curricula that demand cognitive engagement can positively influence the development of cognitive functions.

Zobrazit více v PubMed

Albuquerque M. R., Rennó G. V. C., Bruzi A. T., De Fortes L. S., Malloy-Diniz L. F. (2022). Association between motor competence and executive functions in children. Appl. Neuropsychol. Child 11, 495–503. doi: 10.1080/21622965.2021.1897814 PubMed DOI

Álvarez-Bueno C., Pesce C., Cavero-Redondo I., Sánchez-López M., Martínez-Hortelano J. A., Martínez-Vizcaíno V. (2017). The effect of physical activity interventions on Children’s cognition and metacognition: a systematic review and Meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 729–738. doi: 10.1016/j.jaac.2017.06.012, PMID: PubMed DOI

Bass R. W., Brown D. D., Laurson K. R., Coleman M. M. (2013). Physical fitness and academic performance in middle school students. Acta Paediatrica 102, 832–837. doi: 10.1111/apa.12278 PubMed DOI

Bernstein N. A. (1996). Dexterity and its development. New York: Psychology Press. doi: 10.4324/9781410603357 DOI

Boehm A. (2013). Assessment to intervention using the Boehm test of basic concepts-third edition (Boehm-3). Available at: https://www.pearsonassessments.com/content/dam/school/global/clinical/us/assets/boehm-3/boehm-3-white-paper.pdf

Bogin B. (1990). The evolution of human childhood: a unique growth phase and delayed maturity allow for extensive learning and complex culture. Bioscience 40, 16–25. doi: 10.2307/1311235 DOI

Bouchard C., Shephard R. J. (1994). “Physical activity, fitness, and health: the model and key concepts” in Physical activity, fitness, and health: International proceedings and consensus statement, Eds. C. Bouchard, R. J. Shephard, and T. Stephens (Champaign, Illinois: Human Kinetics Publishers; ) 26: 77–88. doi: 10.1249/00005768-199401000-00024 DOI

Brown T. T., Jernigan T. L. (2012). Brain development during the preschool years. Neuropsychol. Rev. 22, 313–333. doi: 10.1007/s11065-012-9214-1, PMID: PubMed DOI PMC

Cadenas-Sanchez C., Martinez-Tellez B., Sanchez-Delgado G., Mora-Gonzalez J., Castro-Piñero J., Löf M., et al. . (2016). Assessing physical fitness in preschool children: feasibility, reliability and practical recommendations for the PREFIT battery. J. Sci. Med. Sport 19, 910–915. doi: 10.1016/j.jsams.2016.02.003, PMID: PubMed DOI

Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131. PMID: PubMed PMC

Chang Y.-K., Tsai Y.-J., Chen T.-T., Hung T.-M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: an ERP study. Exp. Brain Res. 225, 187–196. doi: 10.1007/s00221-012-3360-9 PubMed DOI

Cook C. J., Howard S. J., Scerif G., Twine R., Kahn K., Norris S. A., et al. . (2019). Associations of physical activity and gross motor skills with executive function in preschool children from low-income south African settings. Dev. Sci. 22:e12820. doi: 10.1111/DESC.12820, PMID: PubMed DOI

Corbin C. B. (1984). Flexibility. Clin. Sports Med. 3, 101–117. doi: 10.1016/S0278-5919(20)31359-4 PubMed DOI

Dean D. C., O’Muircheartaigh J., Dirks H., Waskiewicz N., Lehman K., Walker L., et al. . (2014). Modeling healthy male white matter and myelin development: 3 through 60 months of age. NeuroImage 84, 742–752. doi: 10.1016/j.neuroimage.2013.09.058, PMID: PubMed DOI PMC

Donnelly J. E., Hillman C. H., Castelli D., Etnier J. L., Lee S., Tomporowski P., et al. . (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med. Sci. Sports Exerc. 48, 1197–1222. doi: 10.1249/MSS.0000000000000901, PMID: PubMed DOI PMC

Dubois J., Dehaene-Lambertz G., Kulikova S., Poupon C., Hüppi P. S., Hertz-Pannier L. (2014). The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71. doi: 10.1016/j.neuroscience.2013.12.044, PMID: PubMed DOI

Epstein S. (1992). Coping ability, negative self-evaluation, and overgeneralization: experiment and theory. J. Pers. Soc. Psychol. 62, 826–836. doi: 10.1037/0022-3514.62.5.826, PMID: PubMed DOI

Eveland-Sayers B. M., Farley R. S., Fuller D. K., Morgan D. W., Caputo J. L. (2009). Physical fitness and academic achievement in elementary school children. J. Phys. Act. Health 6, 99–104. doi: 10.1123/jpah.6.1.99 PubMed DOI

Fleishman E. A. (1964). The structure and measurement of physical fitness. Englewood: Prentice-Hall.

Gavrilova M., Veraksa A., Leonov S., Musalek M. (2022). “Physical fitness and child development: interrelations in preschool age” in Child development in Russia: perspectives from an international longitudinal study. ed. Veraksa A. (Springer International Publishing; ), 137–158.

Gerber R. J., Wilks T., Wilks T., Erdie-Lalena C. (2010). Developmental milestones: motor development. Pediatr. Rev. 31, 267–277. doi: 10.1542/pir.31-7-267 PubMed DOI

Gómez-Pinilla F., So V., Kesslak J. P. (1998). Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience 85, 53–61. doi: 10.1016/s0306-4522(97)00576-9, PMID: PubMed DOI

Grieder S., Grob A. (2020). Exploratory factor analyses of the intelligence and development scales–2: implications for theory and practice. Assessment 27, 1853–1869. doi: 10.1177/1073191119845051, PMID: PubMed DOI

Grob A., Meyer C., Hagmann-von Arx P. (2009). Intelligence and development scales (IDS). Bern, Switzerland: Hogrefe. PubMed

Haga M., Haga M. (2008). The relationship between physical fitness and motor competence in children. Child Care Health Develop. 34, 329–334. doi: 10.1111/j.1365-2214.2008.00814.x PubMed DOI

Hagmann-von Arx P., Grob A., Petermann F., Daseking M. (2012). Concurrent validity of the HAWIK-IV and the intelligence and development scales (IDS). Zeitschrift Fur Kinder Und Jugendpsychiatrie Und Psychotherapie 40, 41–50. doi: 10.1024/1422-4917/a000148, PMID: PubMed DOI

Hagmann-von Arx P., Lemola S., Grob A. (2018). Does IQ = IQ? comparability of intelligence test scores in typically developing children. Assessment, 25, 691–701. doi: 10.1177/1073191116662911 PubMed DOI

Hagmann-von Arx P., Meyer C. S., Grob A. (2008). Intelligenz- und entwicklungsdiagnostik im Deutschen sprachraum. [intelligence and developmental scales in German-speaking countries]. Kindheit Und Entwicklung 17, 232–242. doi: 10.1026/0942-5403.17.4.232 DOI

Hagmann-von Arx P., Petermann F., Grob A. (2013). Konvergente und diskriminante Validität der WISC-IV und der Intelligence and Development Scales (IDS) bei Kindern mit Migrationshintergrund. Diagnostica 59, 170–182. doi: 10.1026/0012-1924/a000091 DOI

Harnad S. (2017). “Chapter 2 – to cognize is to categorize: cognition is categorization” in Handbook of categorization in cognitive science. eds. Cohen H., Lefebvre C.. 2nd ed (Elsevier; ), 21–54.

Horga S. (1993). Psihologija sporta Fakultet za fizičku kulturu.

Houwen S., van der Veer G., Visser J., Cantell M. (2017). The relationship between motor performance and parent-rated executive functioning in 3- to 5-year-old children: what is the role of confounding variables? Hum. Mov. Sci. 53, 24–36. doi: 10.1016/J.HUMOV.2016.12.009, PMID: PubMed DOI

Invernizzi P. L., Crotti M., Bosio A., Scurati R., Lovecchio N. (2017). Correlation between cognitive functions and motor coordination in children with different cognitive levels. Advances Physical Educ. 8, 98–115. doi: 10.4236/ape.2018.81011 DOI

Iughetti L., Casarosa E., Predieri B., Patianna V., Luisi S. (2011). Plasma brain-derived neurotrophic factor concentrations in children and adolescents. Neuropeptides 45, 205–211. doi: 10.1016/j.npep.2011.02.002 PubMed DOI

James J., Pringle A., Mourton S., Roscoe C. M. P. (2023). The effects of physical activity on academic performance in school-aged children: a systematic review. Children 10:1019. doi: 10.3390/children10061019, PMID: PubMed DOI PMC

Kalantari H.-A., Esmaeilzadeh S. (2016). Association between academic achievement and physical status including physical activity, aerobic and muscular fitness tests in adolescent boys. Environ. Health Prev. Med. 21, 27–33. doi: 10.1007/s12199-015-0495-x, PMID: PubMed DOI PMC

Kiphard E. J., Schilling F. (1974). Körperkoordinationstest für Kinder: KTK. Weinheim, Germany: Beltz Test. PubMed

Lawrence E. (1957). Review of the Child’s conception of space [review of review of the Child’s conception of space, by J. Piaget, B. Inhelder, F. J. Langdon, & J. L. Lunzer]. Br. J. Educ. Stud. 5, 187–189. doi: 10.2307/3118882 DOI

Luz C., Rodrigues L. P., Almeida G., Cordovil R. (2016). Development and validation of a model of motor competence in children and adolescents. J. Sci. Med. Sport 19, 568–572. doi: 10.1016/j.jsams.2015.07.005, PMID: PubMed DOI

Mabbott D. J., Noseworthy M., Bouffet E., Laughlin S., Rockel C. (2006). White matter growth as a mechanism of cognitive development in children. NeuroImage 33, 936–946. doi: 10.1016/j.neuroimage.2006.07.024 PubMed DOI

Malambo C., Nová A., Clark C., Musálek M. (2022). Associations between fundamental movement skills, physical fitness, motor competency, physical activity, and executive functions in pre-school age children: a systematic review. Children 9. doi: 10.3390/children9071059, PMID: PubMed DOI PMC

Malina R. M., Bouchard C., Bar-Or O. (2004). Growth, maturation, and physical activity. Champaign, IL: Human Kinetics.

Mavilidi M.-F., Okely A. D., Chandler P., Cliff D. P., Paas F. (2015). Effects of integrated physical exercises and gestures on preschool Children’s foreign language vocabulary learning. Educ. Psychol. Rev. 27, 413–426. doi: 10.1007/s10648-015-9337-z DOI

Merzenich M. M. (2001). “Cortical plasticity contributing to child development,” in Mechanisms of cognitive development: behavioral and neural perspectives, Eds. J. L. McClelland and R. S. Siegler (Lawrence Erlbaum Associates Publishers; ), 67–95. doi: 10.1076/chin.8.1.66.8716 DOI

Milosevic V., Petrovic A. (2015). Reliability of field-based tests for monitoring and assessing physical fitness in preschool children. Serb. J. Sports Sci. 9, 20–26.

Molnár D., Livingstone B. (2000). Physical activity in relation to overweight and obesity in children and adolescents. Eur. J. Pediatr. 159, S45–S55. doi: 10.1007/pl00014365 PubMed DOI

Moradi A., Damirchi E. S., Damirchi E. S., Narimani M., Esmaeilzadeh S., Dziembowska I., et al. . (2019). Association between physical and motor fitness with cognition in children. Medicina-Buenos Aires 55:7. doi: 10.3390/medicina55010007, PMID: PubMed DOI PMC

Musálek M., Sedlak P., Dvořáková H., Vážná A., Novák J., Kokštejn J., et al. . (2021). Insufficient physical fitness and deficits in basic eating habits in Normal-weight obese children are apparent from pre-school age or sooner. Nutrients 13. doi: 10.3390/nu13103464, PMID: PubMed DOI PMC

Niederer I., Kriemler S., Gut J., Hartmann T., Schindler C., Barral J., et al. . (2011). Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC Pediatr. 11:34. doi: 10.1186/1471-2431-11-34 PubMed DOI PMC

Norris E., van Steen T., Direito A., Stamatakis E. (2020). Physically active lessons in schools and their impact on physical activity, educational, health and cognition outcomes: a systematic review and meta-analysis. Br. J. Sports Med. 54, 826–838. doi: 10.1136/bjsports-2018-100502, PMID: PubMed DOI

Oakes L. M., Kovack-Lesh K. A. (2013). Infants’ visual recognition memory for a series of categorically related items. J. Cogn. Dev. 14, 63–86. doi: 10.1080/15248372.2011.645971, PMID: PubMed DOI PMC

Pellegrini A. D., Smith P. K. (1998). Physical activity play: the nature and function of a neglected aspect of play. Child Dev. 69, 577–598. doi: 10.1111/j.1467-8624.1998.tb06226.x, PMID: PubMed DOI

Piaget J. (1952). The origins of intelligence in children. New York: W. W. Norton & Co. 419. doi: 10.1037/11494-000 DOI

Piaget J. (1962). The stages of the intellectual development of the child. Bull. Menn. Clin. 26, 120–128. PubMed

Piersel W. C., McAndrews T. (1982). Concept acquisition and school Progress: an examination of the Boehm test of basic concepts. Psychol. Rep. 50, 783–786. doi: 10.2466/pr0.1982.50.3.783 DOI

Planinsec J. (2002). Relations between the motor and cognitive dimensions of preschool girls and boys. Percept. Mot. Skills 94, 415–423. doi: 10.2466/pms.2002.94.2.415 PubMed DOI

Pühse U., Gerber M. (2005). International comparison of physical education: concepts, problems, prospects. Available at: http://edoc.unibas.ch/dok/A3957737

R Core Team . (2021). R: The R Project for Statistical Computing. Available at: https://www.r-project.org/

Sternberg R. J., Wagner R. K. (1986). Practical intelligence: nature and origins of competence in the everyday world. Cambridge, England: Cambridge University Press.

Tomkinson G. R., Lang J. J., Tremblay M. S. (2019). Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 53, 478–486. doi: 10.1136/bjsports-2017-097982, PMID: PubMed DOI

Tomkinson G. R., Olds T. S. (2007). Secular changes in pediatric aerobic fitness test performance: the global picture. Med. Sport Sci. 50, 46–66. doi: 10.1159/000101075 PubMed DOI

Toomela A. (2016). What are higher psychological functions?. Integr Psychol Behav Sci. 50, 91–121. doi: 10.1007/s12124-015-9328-0 PubMed DOI

Utesch T., Bardid F., Büsch D., Strauss B. (2019). The relationship between motor competence and physical fitness from early childhood to early adulthood: a Meta-analysis. Sports Med. 49, 541–551. doi: 10.1007/s40279-019-01068-y, PMID: PubMed DOI

van der Fels I. M. J., Te Wierike S. C. M., Hartman E., Elferink-Gemser M. T., Smith J., Visscher C. (2015). The relationship between motor skills and cognitive skills in 4-16 year old typically developing children: a systematic review. J. Sci. Med. Sport 18, 697–703. doi: 10.1016/j.jsams.2014.09.007, PMID: PubMed DOI

Veraksa A., Tvardovskaya A., Gavrilova M., Yakupova V., Musálek M. (2021). Associations between executive functions and physical fitness in preschool children. Front. Psychol. 12:3282. doi: 10.3389/FPSYG.2021.674746/BIBTEX PubMed DOI PMC

Voelcker-Rehage C. (2005). The relationship between motor and cognitive development in early childhood. Deutsche Zeitschrift Für Sportmedizin 56, 358–363.

Walhain F., van Gorp M., Lamur K. S., Veeger D. H. E. J., Ledebt A. (2016). Health-related fitness, motor coordination, and physical and sedentary activities of urban and rural children in Suriname. J. Phys. Act. Health 13, 1035–1041. doi: 10.1123/jpah.2015-0445 PubMed DOI

Wick K., Kriemler S., Granacher U. (2021). Effects of a strength-dominated exercise program on physical fitness and cognitive performance in preschool children. J. Strength Cond. Res. 35, 983–990. doi: 10.1519/JSC.0000000000003942, PMID: PubMed DOI

Wick K., Kriemler S., Granacher U. (2022). Associations between measures of physical fitness and cognitive performance in preschool children. BMC Sports Sci. Med. Rehabil. 14:80. doi: 10.1186/s13102-022-00470-w, PMID: PubMed DOI PMC

Zhou Z., Peverly S. T., Boehm A. E., Chongde L. (2000). American and Chinese children’s understanding of distance, time, and speed interrelations. Cogn. Dev. 15, 215–240. doi: 10.1016/S0885-2014(00)00031-9 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...