Associations Between Executive Functions and Physical Fitness in Preschool Children
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34408696
PubMed Central
PMC8365159
DOI
10.3389/fpsyg.2021.674746
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive flexibility, inhibitory control, motor performance, physical fitness and sport, working memory,
- Publikační typ
- časopisecké články MeSH
Considering the current agreement on the significance of executive functions, there is growing interest in determining factors that contribute to the development of these skills, especially during the preschool period. Although multiple studies have been focusing on links between physical activity, physical fitness and executive functions, this topic was more investigated in schoolchildren and adults than in preschoolers. The aim of the current study was to identify different levels of physical fitness among pre-schoolers, followed by an analysis of differences in their executive functions. Participants were 261 5-6-years old children. Inhibitory control and working memory were positively linked with physical fitness. Cognitive flexibility was not associated with physical fitness. The research findings are considered from neuropsychological grounds, Jean Piaget's theory of cognitive development, and the cultural-historical approach.
Department of Psychology Lomonosov Moscow State University Moscow Russia
Faculty of Physical Education and Sport Charles University Prague Czechia
Institute of Psychology and Education Kazan Federal University Kazan Russia
Psychological Institute of Russian Academy of Education Moscow Russia
Zobrazit více v PubMed
Almazova O. V., Bukhalenkova D. A., Gavrilova M. N., Veraksa A. N., Yakupova V. A. (2020). Development of Executive Functions in Preschool Children (5–7 years), 2nd Edn. Moscow: Mozaica-Sintez Publishers (M.).
Arvidsson D., Johannesson E., Andersen L. B., Karlsson M., Wollmer P., Thorsson O., et al. (2018). A longitudinal analysis of the relationships of physical activity and body fat with nerve growth factor and brain-derived neural factor in children. J. Phys. Act. Health 15 620–625. 10.1123/jpah.2017-0483 PubMed DOI
Bames J., Behrens T. K., Benden M. E., Biddle S., Bond D., Brassard P., et al. (2012). Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl. Physiol. Nutr. Metab. 37 540–542. 10.1139/h2012-024 PubMed DOI
Barde Y. A. (1989). Trophic factors and neuronal survival. Neuron 2 1525–1534. 10.1016/0896-6273(89)90040-8 PubMed DOI
Bermejo-Cantarero A., Alvarez-Bueno C., Martinez-Vizcaino V., Garcia-Hermoso A., Torres-Costoso A. I., Sanchez-Lopez M. (2017). Association between physical activity, sedentary behavior, and fitness with health-related quality of life in healthy children and adolescents: a protocol for a systematic review and meta-analysis. Medicine 96:e6407. 10.1097/md.0000000000006407 PubMed DOI PMC
Best J. R. (2010). Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev. Rev. 30 331–351. PubMed PMC
Best J. R., Miller P. H. (2010). A developmental perspective on executive function. Child Dev. 81 1641–1660. 10.1111/j.1467-8624.2010.01499.x PubMed DOI PMC
Biddle S. J., Asare M. (2011). Physical activity and mental health in children and adolescents: a review of reviews. Br. J. Sports Med. 45 886–895. 10.1136/bjsports-2011-090185 PubMed DOI
Blair C., Razza R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 78 647–663. 10.1111/j.1467-8624.2007.01019.x PubMed DOI
Blankson A. N., O’Brien M., Leerkes E. M., Marcovitch S., Calkins S. D. (2012). Differentiating processes of control and understanding in the early development of emotion and cognition. Soc. Dev. 21 1–20. 10.1111/j.1467-9507.2011.00593.x PubMed DOI PMC
Bouchard C. E., Shephard R. J., Stephens T. E. (1994). “Physical activity, fitness, and health: International proceedings and consensus statement,” in Proceedings of the International Consensus Symposium on Physical Activity, Fitness, and Health, 2nd May 1992. Toronto, ON: Human Kinetics Publishers.
Carson V., Tremblay M. S., Chaput J. P., Chastin S. F. (2016). Associations between sleep duration, sedentary time, physical activity, and health indicators among Canadian children and youth using compositional analyses. Appl. Physiol. Nutr. Metab. 41 294–302. PubMed
Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100:126. PubMed PMC
Chaddock-Heyman L., Erickson K. I., Kienzler C., Drollette E. S., Raine L. B., Kao S. C., et al. (2018). Physical activity increases white matter microstructure in children. Front. Neurosci. 12:950. 10.3389/fnins.2018.00950 PubMed DOI PMC
Chang Y. K., Labban J. D., Gapin J., I, Etnier J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453 87–101. 10.1016/j.brainres.2012.02.068 PubMed DOI
Cheie L., Veraksa A., Zinchenko Y., Gorovaya A., Visu-Petra L. (2015). A cross-cultural investigation of inhibitory control, generative fluency, and anxiety symptoms in Romanian and Russian preschoolers. Child Neuropsychol. 21 121–149. 10.1080/09297049.2013.879111 PubMed DOI
Cho H. C., Kim J., Kim S., Son Y. H., Lee N., Jung S. H. (2012). The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO2max performance in healthy college men. Neurosci. Lett. 519 78–83. 10.1016/j.neulet.2012.05.025 PubMed DOI
Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430 PubMed DOI
Corbin C. B., Le Masurier G. C. (2014). Fitness for Life. Champaign, IL: Human Kinetics.
Council of Europe (1988). EUROFIT: Handbook for the EUROFIT Tests of Physical Fitness. Rome: Council of Europe.
Davis C. L., Tomporowski P. D., Boyle C. A., Waller J. L., Miller P. H., Naglieri J. A., et al. (2007). Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res. Q. Exerc. Sport 78 510–519. 10.1080/02701367.2007.10599450 PubMed DOI PMC
de Assis G. G., Almondes K. M. D. (2017). Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. a systematic review. Front. Psychol. 8:584. 10.3389/fpsyg.2017.00584 PubMed DOI PMC
de Greeff J. W., Bosker R. J., Oosterlaan J., Visscher C., Hartman E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J. Sci. Med. Sport 21 501–507. 10.1016/j.jsams.2017.09.595 PubMed DOI
DeBate R. D., Pettee Gabriel K., Zwald M., Huberty J., Zhang Y. (2009). Changes in psychosocial factors and physical activity frequency among third- to eighth-grade girls who participated in a developmentally focused youth sport program: a preliminary study. J. Sch. Health 79 474–484. 10.1111/j.1746-1561.2009.00437.x PubMed DOI
Diamond A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 71 44–56. 10.1111/1467-8624.00117 PubMed DOI
Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64 135–168. 10.1146/annurev-psych-113011-143750 PubMed DOI PMC
Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 18 34–48. 10.1016/j.dcn.2015.11.005 PubMed DOI PMC
Dumith S. C., Hallal P. C., Reis R. S., Kohl H. W., III (2011). Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev. Med. 53 24–28. 10.1016/j.ypmed.2011.02.017 PubMed DOI
Dwyer T., Sallis J. F., Blizzard L., Lazarus R., Dean K. (2001). Relation of academic performance to physical activity and fitness in children. Pediatr. Exerc. Sci. 13 225–237. 10.1123/pes.13.3.225 DOI
Ellemberg D., St-Louis-Deschênes M. (2010). The effect of acute physical exercise on cognitive function during development. Psychol. Sport Exerc. 11 122–126. 10.1016/j.psychsport.2009.09.006 DOI
Fedewa A. L., Ahn S. (2011). The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: a meta-analysis. Res. Q. Exerc. Sport 82 521–535. 10.1080/02701367.2011.10599785 PubMed DOI
Gagne J. R. (2017). Self-control in childhood: a synthesis of perspectives and focus on early development. Child Dev. Perspect. 11 127–132. 10.1111/cdep.12223 DOI
García-Hermoso A., Hormazábal-Aguayo I., Fernández-Vergara O., Izquierdo M., Alonso-Martínez A., Bonilla-Vargas K. J., et al. (2020). Physical fitness components in relation to attention capacity in Latin American youth with overweight and obesity. Scand. J. Med. Sci. Sports 30 1188–1193. 10.1111/sms.13649 PubMed DOI
Garon N., Bryson S. E., Smith I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychol. Bull. 134 31–60. 10.1037/0033-2909.134.1.31 PubMed DOI
Ghafori R., Heirani A., Aghadsi M. T. (2018). Effect of motor exercises on serum level of brain-derived neurotrophic factor and executive function in children with dysgraphia. J. Kermanshah Univ. Med. Sci. 22:e79187.
Grieco L. A., Jowers E. M., Bartholomew J. B. (2009). Physically active academic lessons and time on task: the moderating effect of body mass index. Med. Sci. Sports Exerc. 41 1921–1926. 10.1249/MSS.0b013e3181a61495 PubMed DOI
Hintze J. (2007). NCSS 2007. Kaysville, UT: NCSS.
Houwen S., van der Veer G., Visser J., Cantell M. (2017). The relationship between motor performance and parent-rated executive functioning in 3-to 5-year-old children: what is the role of confounding variables? Hum. Mov. Sci. 53 24–36. 10.1016/j.humov.2016.12.009 PubMed DOI
Howard S. J., Vella S. A., Cliff D. P. (2018). Children’s sports participation and self-regulation: bi-directional longitudinal associations. Early Child. Res. Q. 42 140–147. 10.1016/j.ecresq.2017.09.006 DOI
Kamijo K., Pontifex M. B., O’Leary K. C., Scudder M. R., Wu C. T., Castelli D. M., et al. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Dev. Sci. 14 1046–1058. 10.1111/j.1467-7687.2011.01054.x PubMed DOI PMC
Kopp B. (2012). A simple hypothesis of executive function. Front. Hum. Neurosci. 6:159. 10.3389/fnhum.2012.00159 PubMed DOI PMC
Korkman M., Kirk U., Kemp S. (2014). NEPSY-II. Madrid: Pearson.
Lan X., Legare C. H., Ponitz C. C., Li S., Morrison F. J. (2011). Investigating the links between the subcomponents of executive function and academic achievement: a cross-cultural analysis of Chinese and American preschoolers. J. Exp. Child Psychol. 108 677–692. 10.1016/j.jecp.2010.11.001 PubMed DOI
Latorre-Román P. Á, Mora-López D., García-Pinillos F. (2016). Intellectual maturity and physical fitness in preschool children. Pediatr. Int. 58 450–455. 10.1111/ped.12898 PubMed DOI
Lensing N., Elsner B. (2018). Development of hot and cool executive functions in middle childhood: three-year growth curves of decision making and working memory updating. J. Exp. Child Psychol. 173 187–204. 10.1016/j.jecp.2018.04.002 PubMed DOI
Lerner R. M., Liben L. S., Mueller U. (2015). Handbook of Child Psychology and Developmental Science, Cognitive Processes. New York, NY: John Wiley & Sons.
Liebermann D., Giesbrecht G. F., Müller U. (2007). Cognitive and emotional aspects of self-regulation in preschoolers. Cogn. Dev. 22 511–529. 10.1016/j.cogdev.2007.08.005 DOI
Lillard A. S., Drell M. B., Richey E. M., Boguszewski K., Smith E. D. (2015). Further examination of the immediate impact of television on children’s executive function. Dev. Psychol. 51 792–805. 10.1037/a0039097 PubMed DOI
Linebarger D. L., Barr R., Lapierre M. A., Piotrowski J. T. (2014). Associations between parenting, media use, cumulative risk, and children’s executive functioning. J. Dev. Behav. Pediatr. 35 367–377. 10.1097/DBP.0000000000000069 PubMed DOI
Malina R. M., Bouchard C., Bar-Or O. (2004). Growth, Maturation, and Physical Activity. Champaign, IL: Human Kinetics.
Maurer M. N., Roebers C. M. (2019). Towards a better understanding of the association between motor skills and executive functions in 5-to 6-year-olds: the impact of motor task difficulty. Hum. Mov. Sci. 66 607–620. 10.1016/j.humov.2019.06.010 PubMed DOI
Maydeu-Olivares A. (2006). Limited information estimation and testing of discretized multivariate normal structural models. Psychometrika 71 57–77.
McDonald R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Lawrence Erlbaum.
McDonald J. D. (2008). Measuring personality constructs: the advantages and disadvantages of self-reports, informant reports and behavioural assessments. Enquire 1 75–94.
McDonald R. P., Marsh H. W. (1990). Choosing a multivariate model: noncentrality and goodness of fit. Psychol. Bull. 107:247. 10.1037/0033-2909.107.2.247 DOI
Měkota K., Kovář R. (1995). Unifittest (6-60): Test and Norms of Motor Performance and Physical Fitness in Youth and in Adult Age. Olomouc: Vydavatelství Univerzity Palackého.
Meredith M. D., Welk G. (eds) (2010). Fitnessgram and Activitygram Test Administration Manual-Updated, 4th Edn. Champaign, IL: Human Kinetics.
Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734 PubMed DOI
Morrow J. R., Jr., Zhu W., Franks D. B., Meredith M. D., Spain C. (2009). 1958–2008: 50 years of youth fitness tests in the United States. Res. Q. Exerc. Sport 80 1–11. 10.1080/02701367.2009.10599524 PubMed DOI
Mulvey K. L., Taunton S., Pennell A., Brian A. (2018). Head, toes, knees, SKIP! Improving preschool children’s executive function through a motor competence intervention. J. Sport Exerc. Psychol. 40 233–239. 10.1123/jsep.2018-0007 PubMed DOI
Nelson J. M., James T. D., Chevalier N., Clark C. A. C., Espy K. A. (2016). “Structure, measurement, and development of preschool executive function,” in Executive Function in Preschool-Age Children: Integrating Measurement, Neurodevelopment, and Translational Research, eds Griffin J. A., McCardle P., Freund L. S. (Washington, DC: American Psychological Association; ), 65–89. 10.1037/14797-004 DOI
Oberer N., Gashaj V., Roebers C. M. (2018). Executive functions, visual-motor coordination, physical fitness and academic achievement: longitudinal relations in typically developing children. Hum. Mov. Sci. 58 69–79. 10.1016/j.humov.2018.01.003 PubMed DOI
Ortega F. B., Cadenas-Sánchez C., Sánchez-Delgado G., Mora-González J., Martínez-Téllez B., Artero E. G., et al. (2015). Systematic review and proposal of a field-based physical fitness-test battery in preschool children: the PREFIT battery. Sports Med. 45 533–555. 10.1007/s40279-014-0281-8 PubMed DOI
Pellegrini A. D., Smith P. K. (1998). Physical activity play: the nature and function of a neglected aspect of play. Child Dev. 69 577–598. 10.1111/j.1467-8624.1998.tb06226.x PubMed DOI
Piaget J., Inhelder B. (1966). L’image Mentale chez L’enfant. Paris: Presses Universitaires de France.
Piché G., Fitzpatrick C., Pagani L. S. (2012). Kindergarten self-regulation as a predictor of body mass index and sports participation in fourth grade students. Mind Brain Educ. 6 19–26. 10.1111/j.1751-228x.2011.01132.x DOI
Piché G., Fitzpatrick C., Pagani L. S. (2015). Associations between extracurricular activity and self-regulation: a longitudinal study from 5 to 10 years of age. Am. J. Health Promot. 30 32–40. PubMed
Planinsec J., Pisot R. (2006). Motor coordination and intelligence level in adolescents. Adolescence 41 667–676. PubMed
Prencipe A., Kesek A., Cohen J., Lamm C., Lewis M. D., Zelazo P. D. (2011). Development of hot and cool executive function during the transition to adolescence. J. Exp. Child Psychol. 108 621–637. 10.1016/j.jecp.2010.09.008 PubMed DOI
Rarick G.(ed.) (2012). Physical Activity: Human Growth and Development. Amsterdam: Elsevier.
Robinson L. E., Stodden D. F., Barnett L. M., Lopes V. P., Logan S. W., Rodrigues L. P., et al. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Med. 45 1273–1284. 10.1007/s40279-015-0351-6 PubMed DOI
Roebers C. M., Kauer M. (2009). Motor and cognitive control in a normative sample of 7-year-olds. Dev. Sci. 12 175–181. 10.1111/j.1467-7687.2008.00755.x PubMed DOI
Roh H. T., Cho S. Y., Yoon H. G., So W. Y. (2017). Effect of exercise intensity on neurotrophic factors and blood–brain barrier permeability induced by oxidative–nitrosative stress in male college students. Int. J. Sport Nutr. Exerc. Metab. 27 239–246. 10.1123/ijsnem.2016-0009 PubMed DOI
Rowland T. W. (1998). The biological basis of physical activity. Med. Sci. Sports Exerc. 30 392–399. PubMed
Ruiz J. R., Castro-Piñero J., España-Romero V., Artero E. G., Ortega F. B., Cuenca M. M., et al. (2011). Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 45 518–524. 10.1136/bjsm.2010.075341 PubMed DOI
Shim S. H., Hwangbo Y., Kwon Y. J., Jeong H. Y., Lee B. H., Lee H. J., et al. (2008). Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 32 1824–1828. 10.1016/j.pnpbp.2008.08.005 PubMed DOI
Sibley B. A., Etnier J. L. (2003). The relationship between physical activity and cognition in children: a meta-analysis. Pediatr. Exerc. Sci. 15 243–256. 10.1123/pes.15.3.243 DOI
Silva C., Annamalai K. (2008). Entropy generation and human aging: lifespan entropy and effect of physical activity level. Entropy 10 100–123. 10.3390/entropy-e10020100 DOI
Skogli E. W., Andersen P. N., Hovik K. T., Øie M. (2017). Development of hot and cold executive function in boys and girls with ADHD: a 2-year longitudinal study. J. Atten. Dis. 21 305–315. 10.1177/1087054714524984 PubMed DOI
Torres M. M., Domitrovich C. E., Bierman K. L. (2015). Preschool interpersonal relationships predict kindergarten achievement: mediated by gains in emotion knowledge. J. Appl. Dev. Psychol. 39 44–52. 10.1016/j.appdev.2015.04.008 PubMed DOI PMC
US Department of Health and Human Services (2008). Physical activity Guidelines Advisory Committee: 2008. Physical Activity Guidelines for Americans, 9-683. Washington, DC: US Department of Health and Human Services.
Utendale W. T., Hubert M., Saint-Pierre A. B., Hastings P. D. (2011). Neurocognitive development and externalizing problems: the role of inhibitory control deficits from 4 to 6 years. Aggress. Behav. 37 476–488. 10.1002/ab.20403 PubMed DOI
Vaynman S., Gomez-Pinilla F. (2006). Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J. Neurosci. Res. 84 699–715. 10.1002/jnr.20979 PubMed DOI
Verburgh L., Königs M., Scherder E. J., Oosterlaan J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br. J. Sports Med. 48 973–979. 10.1136/bjsports-2012-091441 PubMed DOI
Visier-Alfonso M. E., Sánchez-López M., Martínez-Vizcaíno V., Jiménez-López E., Redondo-Tébar A., Nieto-López M. (2020). Executive functions mediate the relationship between cardiorespiratory fitness and academic achievement in Spanish schoolchildren aged 8 to 11 years. PLoS One 15:e0231246. 10.1371/journal.pone.0231246 PubMed DOI PMC
Welk G. J., Corbin C. B., Dale D. (2000). Measurement issues in the assessment of physical activity in children. Res. Q. Exerc. Sport 71 (Suppl. 2), 59–73. 10.1080/02701367.2000.11082788 PubMed DOI
Zelazo P. D. (2006). The Dimensional Change Card Sort (DCCS): a method of assessing executive function in children. Nat. Protoc. 1 297–301. 10.1038/nprot.2006.46 PubMed DOI
Zelazo P. D., Muller U., Frye D., Marcovitch S. (2003). The development of executive function in early childhood. Monogr. Soc. Res. Child Dev. 68 1–27. 10.1111/j.0037-976X.2003.00261.x PubMed DOI