TCF/LEF Transcription Factors: An Update from the Internet Resources

. 2016 Jul 20 ; 8 (7) : . [epub] 20160720

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27447672

T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins (TCFs) from the High Mobility Group (HMG) box family act as the main downstream effectors of the Wnt signaling pathway. The mammalian TCF/LEF family comprises four nuclear factors designated TCF7, LEF1, TCF7L1, and TCF7L2 (also known as TCF1, LEF1, TCF3, and TCF4, respectively). The proteins display common structural features and are often expressed in overlapping patterns implying their redundancy. Such redundancy was indeed observed in gene targeting studies; however, individual family members also exhibit unique features that are not recapitulated by the related proteins. In the present viewpoint, we summarized our current knowledge about the specific features of individual TCFs, namely structural-functional studies, posttranslational modifications, interacting partners, and phenotypes obtained upon gene targeting in the mouse. In addition, we employed several publicly available databases and web tools to evaluate the expression patterns and production of gene-specific isoforms of the TCF/LEF family members in human cells and tissues.

Zobrazit více v PubMed

Molenaar M., van de Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., Roose J., Destree O., Clevers H. XTcF-3 transcription factor mediates beta-catenin-induced axis formation in xenopus embryos. Cell. 1996;86:391–399. doi: 10.1016/S0092-8674(00)80112-9. PubMed DOI

Li V.S., Ng S.S., Boersema P.J., Low T.Y., Karthaus W.R., Gerlach J.P., Mohammed S., Heck A.J., Maurice M.M., Mahmoudi T., et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149:1245–1256. doi: 10.1016/j.cell.2012.05.002. PubMed DOI

Kim S.E., Huang H., Zhao M., Zhang X., Zhang A., Semonov M.V., MacDonald B.T., Garcia Abreu J., Peng L., He X. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013;340:867–870. doi: 10.1126/science.1232389. PubMed DOI PMC

Cavallo R.A., Cox R.T., Moline M.M., Roose J., Polevoy G.A., Clevers H., Peifer M., Bejsovec A. Drosophila TCF and groucho interact to repress wingless signalling activity. Nature. 1998;395:604–608. PubMed

Roose J., Molenaar M., Peterson J., Hurenkamp J., Brantjes H., Moerer P., van de Wetering M., Destree O., Clevers H. The xenopus Wnt effector XTcf-3 interacts with groucho-related transcriptional repressors. Nature. 1998;395:608–612. PubMed

Brantjes H., Roose J., van de Wetering M., Clevers H. All Tcf HMG box transcription factors interact with groucho-related co-repressors. Nucleic Acids Res. 2001;29:1410–1419. doi: 10.1093/nar/29.7.1410. PubMed DOI PMC

Vangenderen C., Okamura R.M., Farinas I., Quo R.G., Parslow T.G., Bruhn L., Grosschedl R. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 1994;8:2691–2703. doi: 10.1101/gad.8.22.2691. PubMed DOI

Galceran J., Farinas I., Depew M.J., Clevers H., Grosschedl R. Wnt3a−/−—Like phenotype and limb deficiency in Lef1−/−Tcf1−/− mice. Genes Dev. 1999;13:709–717. doi: 10.1101/gad.13.6.709. PubMed DOI PMC

Travis A., Amsterdam A., Belanger C., Grosschedl R. Lef-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function (corrected) Genes Dev. 1991;5:880–894. doi: 10.1101/gad.5.5.880. PubMed DOI

Merrill B.J., Pasolli H.A., Polak L., Rendl M., Garcia-Garcia M.J., Anderson K.V., Fuchs E. Tcf3: A transcriptional regulator of axis induction in the early embryo. Development. 2004;131:263–274. doi: 10.1242/dev.00935. PubMed DOI

Cadigan K.M., Waterman M.L. TCF/LEFS and wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 2012 doi: 10.1101/cshperspect.a007906. PubMed DOI PMC

Van de Wetering M., Cavallo R., Dooijes D., van Beest M., van Es J., Loureiro J., Ypma A., Hursh D., Jones T., Bejsovec A., et al. Armadillo coactivates transcription driven by the product of the drosophila segment polarity gene dTCF. Cell. 1997;88:789–799. doi: 10.1016/S0092-8674(00)81925-X. PubMed DOI

Van Beest M., Dooijes D., van De Wetering M., Kjaerulff S., Bonvin A., Nielsen O., Clevers H. Sequence-specific high mobility group box factors recognize 10–12-base pair minor groove motifs. J. Biol. Chem. 2000;275:27266–27273. PubMed

Atcha F.A., Syed A., Wu B., Hoverter N.P., Yokoyama N.N., Ting J.H., Munguia J.E., Mangalam H.J., Marsh J.L., Waterman M.L. A unique DNA binding domain converts t-cell factors into strong wnt effectors. Mol. Cell Biol. 2007;27:8352–8363. doi: 10.1128/MCB.02132-06. PubMed DOI PMC

Van de Wetering M., Clevers H. Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. EMBO J. 1992;11:3039–3044. PubMed PMC

Giese K., Cox J., Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell. 1992;69:185–195. doi: 10.1016/0092-8674(92)90129-Z. PubMed DOI

Giese K., Amsterdam A., Grosschedl R. DNA-binding properties of the HMG domain of the lymphoid-specific transcriptional regulator LEF-1. Genes Dev. 1991;5:2567–2578. doi: 10.1101/gad.5.12b.2567. PubMed DOI

Waterman M.L., Fischer W.H., Jones K.A. A thymus-specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev. 1991;5:656–669. doi: 10.1101/gad.5.4.656. PubMed DOI

Van de Wetering M., Oosterwegel M., Dooijes D., Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 1991;10:123–132. PubMed PMC

Dooijes D., van de Wetering M., Knippels L., Clevers H. The schizosaccharomyces pombe mating-type gene mat-Mc encodes a sequence-specific DNA-binding high mobility group box protein. J. Biol. Chem. 1993;268:24813–24817. PubMed

Hatzis P., van der Flier L.G., van Driel M.A., Guryev V., Nielsen F., Denissov S., Nijman I.J., Koster J., Santo E.E., Welboren W., et al. Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol. Cell. Biol. 2008;28:2732–2744. doi: 10.1128/MCB.02175-07. PubMed DOI PMC

Bottomly D., Kyler S.L., McWeeney S.K., Yochum G.S. Identification of {beta}-catenin binding regions in colon cancer cells using ChiP-Seq. Nucleic Acids Res. 2010;38:5735–5745. doi: 10.1093/nar/gkq363. PubMed DOI PMC

Prieve M.G., Guttridge K.L., Munguia J., Waterman M.L. Differential importin-alpha recognition and nuclear transport by nuclear localization signals within the high-mobility-group DNA binding domains of lymphoid enhancer factor 1 and T-cell factor 1. Mol. Cell. Biol. 1998;18:4819–4832. doi: 10.1128/MCB.18.8.4819. PubMed DOI PMC

Behrens J., von Kries J.P., Kuhl M., Bruhn L., Wedlich D., Grosschedl R., Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–642. doi: 10.1038/382638a0. PubMed DOI

Hovanes K., Li T.W., Munguia J.E., Truong T., Milovanovic T., Lawrence Marsh J., Holcombe R.F., Waterman M.L. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 2001;28:53–57. doi: 10.1038/ng0501-53. PubMed DOI

Najdi R., Syed A., Arce L., Theisen H., Ting J.H., Atcha F., Nguyen A.V., Martinez M., Holcombe R.F., Edwards R.A., et al. A Wnt kinase network alters nuclear localization of TCF-1 in colon cancer. Oncogene. 2009;28:4133–4146. doi: 10.1038/onc.2009.271. PubMed DOI PMC

Vacik T., Stubbs J.L., Lemke G. A novel mechanism for the transcriptional regulation of Wnt signaling in development. Genes Dev. 2011;25:1783–1795. doi: 10.1101/gad.17227011. PubMed DOI PMC

Grumolato L., Liu G., Haremaki T., Mungamuri S.K., Mong P., Akiri G., Lopez-Bergami P., Arita A., Anouar Y., Mlodzik M., et al. Beta-catenin-independent activation of TCF1/LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. PLoS Genet. 2013;9:70. doi: 10.1371/journal.pgen.1003603. PubMed DOI PMC

Brannon M., Gomperts M., Sumoy L., Moon R.T., Kimelman D. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in xenopus. Genes Dev. 1997;11:2359–2370. doi: 10.1101/gad.11.18.2359. PubMed DOI PMC

Riese J., Yu X., Munnerlyn A., Eresh S., Hsu S.C., Grosschedl R., Bienz M. Lef-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell. 1997;88:777–787. doi: 10.1016/S0092-8674(00)81924-8. PubMed DOI

Arce L., Pate K.T., Waterman M.L. Groucho binds two conserved regions of LEF-1 for hdac-dependent repression. BMC Cancer. 2009;9 doi: 10.1186/1471-2407-9-159. PubMed DOI PMC

Calvo D., Victor M., Gay F., Sui G., Luke M.P., Dufourcq P., Wen G., Maduro M., Rothman J., Shi Y. A pop-1 repressor complex restricts inappropriate cell type-specific gene transcription during caenorhabditis elegans embryogenesis. EMBO J. 2001;20:7197–7208. doi: 10.1093/emboj/20.24.7197. PubMed DOI PMC

Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell. 2002;9:213–224. doi: 10.1016/S1097-2765(02)00443-4. PubMed DOI

Fang M., Li J., Blauwkamp T., Bhambhani C., Campbell N., Cadigan K.M. C-terminal-binding protein directly activates and represses wnt transcriptional targets in drosophila. EMBO J. 2006;25:2735–2745. doi: 10.1038/sj.emboj.7601153. PubMed DOI PMC

Brannon M., Brown J.D., Bates R., Kimelman D., Moon R.T. XCtBP is a XTcf-3 co-repressor with roles throughout xenopus development. Development. 1999;126:3159–3170. PubMed

Valenta T., Lukas J., Korinek V. Hmg box transcription factor TCF-4's interaction with CtBP1 controls the expression of the wnt target Axin2/conductin in human embryonic kidney cells. Nucleic Acids Res. 2003;31:2369–2380. doi: 10.1093/nar/gkg346. PubMed DOI PMC

Patel J., Baranwal S., Love I.M., Patel N.J., Grossman S.R., Patel B.B. Inhibition of C-terminal binding protein attenuates transcription factor 4 signaling to selectively target colon cancer stem cells. Cell Cycle. 2014;13:3506–3518. doi: 10.4161/15384101.2014.958407. PubMed DOI PMC

Hamada F., Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev. Cell. 2004;7:677–685. doi: 10.1016/j.devcel.2004.08.022. PubMed DOI

Hikasa H., Ezan J., Itoh K., Li X., Klymkowsky M.W., Sokol S.Y. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev. Cell. 2010;19:521–532. doi: 10.1016/j.devcel.2010.09.005. PubMed DOI PMC

Hikasa H., Sokol S.Y. Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J. Biol. Chem. 2011;286:12093–12100. doi: 10.1074/jbc.M110.185280. PubMed DOI PMC

Ishitani T., Ninomiya-Tsuji J., Matsumoto K. Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol. Cell. Biol. 2003;23:1379–1389. doi: 10.1128/MCB.23.4.1379-1389.2003. PubMed DOI PMC

Yamada M., Ohnishi J., Ohkawara B., Iemura S., Satoh K., Hyodo-Miura J., Kawachi K., Natsume T., Shibuya H. NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF) J. Biol. Chem. 2006;281:20749–20760. doi: 10.1074/jbc.M602089200. PubMed DOI

Mahmoudi T., Li V.S., Ng S.S., Taouatas N., Vries R.G., Mohammed S., Heck A.J., Clevers H. The kinase TNIK is an essential activator of Wnt target genes. EMBO J. 2009;28:3329–3340. doi: 10.1038/emboj.2009.285. PubMed DOI PMC

Shitashige M., Satow R., Jigami T., Aoki K., Honda K., Shibata T., Ono M., Hirohashi S., Yamada T. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res. 2010;70:5024–5033. doi: 10.1158/0008-5472.CAN-10-0306. PubMed DOI

Yamamoto H., Ihara M., Matsuura Y., Kikuchi A. Sumoylation is involved in beta-catenin-dependent activation of TCF-4. EMBO J. 2003;22:2047–2059. doi: 10.1093/emboj/cdg204. PubMed DOI PMC

Waltzer L., Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize wingless signalling. Nature. 1998;395:521–525. PubMed

GTEx Consortium Human genomics. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–660. PubMed PMC

Forrest A.R., Kawaji H., Rehli M., Baillie J.K., de Hoon M.J., Haberle V., Lassmann T., Kulakovskiy I.V., Lizio M., Itoh M., et al. A promoter-level mammalian expression atlas. Nature. 2014;507:462–470. doi: 10.1038/nature13182. PubMed DOI PMC

Oosterwegel M., van de Wetering M., Dooijes D., Klomp L., Winoto A., Georgopoulos K., Meijlink F., Clevers H. Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J. Exp. Med. 1991;173:1133–1142. doi: 10.1084/jem.173.5.1133. PubMed DOI PMC

Oosterwegel M., van de Wetering M., Timmerman J., Kruisbeek A., Destree O., Meijlink F., Clevers H. Differential expression of the hmg box factors TCF-1 and LEF-1 during murine embryogenesis. Development. 1993;118:439–448. PubMed

Verbeek S., Izon D., Hofhuis F., Robanus-Maandag E., te Riele H., van de Wetering M., Oosterwegel M., Wilson A., MacDonald H.R., Clevers H. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature. 1995;374:70–74. doi: 10.1038/374070a0. PubMed DOI

Gregorieff A., Grosschedl R., Clevers H. Hindgut defects and transformation of the gastro-intestinal tract in TCF4−/−/TCF1−/− embryos. EMBO J. 2004;23:1825–1833. doi: 10.1038/sj.emboj.7600191. PubMed DOI PMC

Roose J., Huls G., van Beest M., Moerer P., van der Horn K., Goldschmeding R., Logtenberg T., Clevers H. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 1999;285:1923–1926. doi: 10.1126/science.285.5435.1923. PubMed DOI

Jackstadt R., Sansom O.J. Mouse models of intestinal cancer. J. Pathol. 2016;238:141–151. doi: 10.1002/path.4645. PubMed DOI PMC

Gregorieff A., Pinto D., Begthel H., Destree O., Kielman M., Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129:626–638. doi: 10.1016/j.gastro.2005.06.007. PubMed DOI

Van de Wetering M., Castrop J., Korinek V., Clevers H. Extensive alternative splicing and dual promoter usage generate TCF-1 protein isoforms with differential transcription control properties. Mol. Cell. Biol. 1996;16:745–752. doi: 10.1128/MCB.16.3.745. PubMed DOI PMC

Tang W., Dodge M., Gundapaneni D., Michnoff C., Roth M., Lum L. A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription Factors in cancer. Proc. Natl. Acad. Sci. USA. 2008;105:9697–9702. doi: 10.1073/pnas.0804709105. PubMed DOI PMC

Weise A., Bruser K., Elfert S., Wallmen B., Wittel Y., Woehrle S., Hecht A. Alternative splicing of TCF7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets. Nucleic Acids Res. 2010;38:1964–1981. doi: 10.1093/nar/gkp1197. PubMed DOI PMC

Atcha F.A., Munguia J.E., Li T.W., Hovanes K., Waterman M.L. A new beta-catenin dependent activation domain in T cell factor. J. Biol. Chem. 2003;278:16169–16175. doi: 10.1074/jbc.M213218200. PubMed DOI

Hoverter N.P., Zeller M.D., McQuade M.M., Garibaldi A., Busch A., Selwan E.M., Hertel K.J., Baldi P., Waterman M.L. The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition. Nucleic Acids Res. 2014;42:13615–13632. doi: 10.1093/nar/gku1186. PubMed DOI PMC

Chang M.V., Chang J.L., Gangopadhyay A., Shearer A., Cadigan K.M. Activation of wingless targets requires bipartite recognition of DNA by TCF. Curr. Biol. 2008;18:1877–1881. doi: 10.1016/j.cub.2008.10.047. PubMed DOI PMC

Hoverter N.P., Ting J.H., Sundaresh S., Baldi P., Waterman M.L. A Wnt/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Mol. Cell. Biol. 2012;32:3648–3662. doi: 10.1128/MCB.06769-11. PubMed DOI PMC

Bruhn L., Munnerlyn A., Grosschedl R. Aly, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev. 1997;11:640–653. doi: 10.1101/gad.11.5.640. PubMed DOI

Yasumoto K., Takeda K., Saito H., Watanabe K., Takahashi K., Shibahara S. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J. 2002;21:2703–2714. doi: 10.1093/emboj/21.11.2703. PubMed DOI PMC

Gradl D., Konig A., Wedlich D. Functional diversity of xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. J. Biol. Chem. 2002;277:14159–14171. doi: 10.1074/jbc.M107055200. PubMed DOI

Nguyen H., Rendl M., Fuchs E. TCF3 governs stem cell features and represses cell fate determination in skin. Cell. 2006;127:171–183. doi: 10.1016/j.cell.2006.07.036. PubMed DOI

Nguyen H., Merrill B.J., Polak L., Nikolova M., Rendl M., Shaver T.M., Pasolli H.A., Fuchs E. TCF3 and TCF4 are essential for long-term homeostasis of skin epithelia. Nat. Genet. 2009;41:1068–1075. doi: 10.1038/ng.431. PubMed DOI PMC

Pereira L., Yi F., Merrill B.J. Repression of nanog gene transcription by TCF3 limits embryonic stem cell self-renewal. Mol. Cell. Biol. 2006;26:7479–7491. doi: 10.1128/MCB.00368-06. PubMed DOI PMC

Yi F., Pereira L., Hoffman J.A., Shy B.R., Yuen C.M., Liu D.R., Merrill B.J. Opposing effects of TCF3 and TCF1 control Wnt stimulation of embryonic stem cell self-renewal. Nat. Cell Biol. 2011;13:762–770. doi: 10.1038/ncb2283. PubMed DOI PMC

Wray J., Kalkan T., Gomez-Lopez S., Eckardt D., Cook A., Kemler R., Smith A. Inhibition of glycogen synthase kinase-3 alleviates TCF3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat. Cell Biol. 2011;13:838–845. doi: 10.1038/ncb2267. PubMed DOI PMC

Kelly K.F., Ng D.Y., Jayakumaran G., Wood G.A., Koide H., Doble B.W. Beta-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell. 2011;8:214–227. doi: 10.1016/j.stem.2010.12.010. PubMed DOI PMC

Shy B.R., Wu C.I., Khramtsova G.F., Zhang J.Y., Olopade O.I., Goss K.H., Merrill B.J. Regulation of TCF7l1 DNA binding and protein stability as principal mechanisms of Wnt/beta-catenin signaling. Cell Rep. 2013;4:1–9. doi: 10.1016/j.celrep.2013.06.001. PubMed DOI PMC

Merrill B.J., Gat U., DasGupta R., Fuchs E. TCF3 and LEF1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001;15:1688–1705. doi: 10.1101/gad.891401. PubMed DOI PMC

Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. PubMed PMC

Korinek V., Barker N., Morin P.J., van Wichen D., de Weger R., Kinzler K.W., Vogelstein B., Clevers H. Constitutive transcriptional activation by a beta-catenin-TCF complex in APC−/− colon carcinoma. Science. 1997;275:1784–1787. doi: 10.1126/science.275.5307.1784. PubMed DOI

Korinek V., Barker N., Moerer P., van Donselaar E., Huls G., Peters P.J., Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking TCF-4. Nat. Genet. 1998;19:379–383. PubMed

Angus-Hill M.L., Elbert K.M., Hidalgo J., Capecchi M.R. T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis. Proc. Natl. Acad. Sci. USA. 2011;108:4914–4919. doi: 10.1073/pnas.1102300108. PubMed DOI PMC

Van Es J.H., Haegebarth A., Kujala P., Itzkovitz S., Koo B.-K., Boj S.F., Korving J., van den Born M., van Oudenaarden A., Robine S., et al. A critical role for the Wnt effector TCF4 in adult intestinal homeostatic self-renewal. Mol. Cell. Biol. 2012;32:1918–1927. doi: 10.1128/MCB.06288-11. PubMed DOI PMC

Pinto D., Gregorieff A., Begthel H., Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17:1709–1713. doi: 10.1101/gad.267103. PubMed DOI PMC

Wallmen B., Schrempp M., Hecht A. Intrinsic properties of TCF1 and TCF4 splice variants determine cell-type-specific Wnt/beta-catenin target gene expression. Nucleic Acids Res. 2012 doi: 10.1093/nar/gks690. PubMed DOI PMC

Duval A., Gayet J., Zhou X.P., Iacopetta B., Thomas G., Hamelin R. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res. 1999;59:4213–4215. PubMed

Kim M.S., Kim S.S., Ahn C.H., Yoo N.J., Lee S.H. Frameshift mutations of Wnt pathway genes Axin2 and TCF7l2 in gastric carcinomas with high microsatellite instabitity. Hum. Pathol. 2009;40:58–64. doi: 10.1016/j.humpath.2008.06.006. PubMed DOI

Sjoblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–274. doi: 10.1126/science.1133427. PubMed DOI

Krausova M., Korinek V. Wnt signaling in adult intestinal stem cells and cancer. Cell. Signal. 2014;26:570–579. doi: 10.1016/j.cellsig.2013.11.032. PubMed DOI

Reya T., Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850. doi: 10.1038/nature03319. PubMed DOI

Ireland H., Kemp R., Houghton C., Howard L., Clarke A.R., Sansom O.J., Winton D.J. Inducible cre-mediated control of gene expression in the murine gastrointestinal tract: Effect of loss of beta-catenin. Gastroenterology. 2004;126:1236–1246. doi: 10.1053/j.gastro.2004.03.020. PubMed DOI

Fevr T., Robine S., Louvard D., Huelsken J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 2007;27:7551–7559. doi: 10.1128/MCB.01034-07. PubMed DOI PMC

Bass A.J., Lawrence M.S., Brace L.E., Ramos A.H., Drier Y., Cibulskis K., Sougnez C., Voet D., Saksena G., Sivachenko A., et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent vti1a-TCF7l2 fusion. Nat. Genet. 2011;43:964–968. doi: 10.1038/ng.936. PubMed DOI PMC

Seshagiri S., Stawiski E.W., Durinck S., Modrusan Z., Storm E.E., Conboy C.B., Chaudhuri S., Guan Y., Janakiraman V., Jaiswal B.S., et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–664. doi: 10.1038/nature11282. PubMed DOI PMC

Tomczak K., Czerwinska P., Wiznerowicz M. The cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015;19:A68–A77. doi: 10.5114/wo.2014.47136. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...