Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe

. 2016 ; 11 (7) : e0159202. [epub] 20160727

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27463515

Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs.

Zobrazit více v PubMed

Storchová R, Gregorová S, Buckiová D, Kyselová V, Divina P, Forejt J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm Genome. 2004; 15: 515–524. PubMed

Mihola O, Trachtulec Z, Vlček Č, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science. 2009; 323: 373–375. 10.1126/science.1163601 PubMed DOI

Phadnis N, Orr HA. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science. 2009; 323: 376–379. 10.1126/science.1163934 PubMed DOI PMC

McCarthy EM. Handook of avian hybrids of the world. New York: Oxford University Press; 2006.

Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. J Genet. 1922; 12: 101–109.

Helbig AJ, Seibold I, Kocum A, Liebers D, Irwin J, Bergmanis U, et al. Genetic differentiation and hybridization between greater and lesser spotted eagles (Accipitriformes: Aquila clanga, A. pomarina). J Ornithol. 2005; 146: 226–234.

Fefelov IV. Comparative breeding ecology and hybridization of Eastern and Western Marsh Harriers Circus spilonotus and C. aeruginosus in the Baikal region of eastern Siberia. Ibis. 2001; 143: 587–592.

Bird J, Butchart S, Derhé M, Ekstrom J, Harding M, Taylor J, et al. Milvus milvus. The IUCN Red List of Threatened Species 2013; 2013. BirdLife International. Available from <10.2305/IUCN.UK.2013-2.RLTS.T22695072A40741496.en>; accessed 23-Mar-2016. DOI

Ferguson-Lees J, Christie DA. Raptors of the World Helm Identification Guides. London: Christopher Helm; 2001.

Literák I, Matušík H, Rác P. Luňáci, jejich variabilita a hybridizace. Živa. 2014; 62: 35–39.

Ortlieb R. Der Rotmilan. Neue Brehm-Bücherei 532. A. Wittenberg Lutherstadt: Ziemsen Verlag; 1989.

Wobus U, Creutz G. Eine erfolgreiche Mischbrut von Rot-und Schwarzmilan (Milvus milvus × Milvus migrans). Zool Abh Mus Tierkd Dresden. 1970; 31: 305–313.

Sylvén M. Hybridisering mellan glada Milvus milvus och brun glada M. migrans I Sverige 1976. Vår Fågelvärld. 1977; 36: 38–44.

Looft V, Busche G. Vogelwelt Schleswig-Holsteins, Greifvögel. Neumünster: Karl Wachholtz Verlag; 1981.

Ortlieb R. Der Schwarzmilan. Neue Brehm-Bücherei 100. Hohenwarsleben: Westarp-Wissenschaften; 1998.

Freere PJ. Unidentified Milvus kites in Kenya. Gabar. 1987; 2: 47–48.

Monsén B. Häcking av Brunglada × Hybridglada I Värmland 1981. Värmlandsornithologen. 1987; 15: 13–15.

Bijlsma RB. Unidentified Kenyan kites—hybrid black × red? Gabar. 1988; 3: 19–20.

Corso A, Palumbo G. Prima osservazione italiana di ibrido tra Nibio reale Milvus milvus e Nibio Bruno Milvus migrans. Picus. 2001; 27: 31–33.

Dörrie HH. Avifaunischer Jahresbericht 2000 für den Raum Göttingen und Nordheim. Naturkundl Ber Fauna Süd-Niedersachsen. 2001; 6: 5–121.

Berndt RK, Koop B, Struwe-Juhl B. Vogelwelt Schleswig-Holsteins, Bd. 5: Brutvogelatlas. Neumünster: Wachholtz Verlag; 2002.

Dittberner H, Dittberner W. Der Rotmilan—ein Greifvogel der Insel Rügen. Rugia Journal. 2002; 2002: 81–85.

Nachtigall W, Gleichner W. Mischbruten zwischen Rot- Milvus milvus und Schwarzmilan M. migrans–ein weiterer Fall aus Sachsen. Limicola. 2005; 19: 180–194.

Woolley S. An unusual kite at Cheesefoot Head in early 2003 In: Hampshire Bird Report 2004. Basingstoke: Hampshire Ornithological Society; 2005. pp. 215–219.

Schmidt M, Schmidt R. Langjährig erfolgreiches Mischbrutpaar von Schwarz- (Milvus migrans) und Rotmilan (Milvus milvus) in Schleswig-Holstein. Corax. 2006; 20: 165–178.

Stübing S, Fichtler M. Hybriden zwischen Rot- Milvus milvus und Schwarzmilan M. migrans: Vorkommen, Verwechslungsgefahren und eine neue Beobachtung aus Hessen. Limicola 2006; 20: 169–186.

Forsman D, Nye D. A hybrid Red Kite × Black Kite in Cyprus. Birding World. 2007; 20: 480–481.

Mindlin G. Red and black. Ptushki i My. 2015; 26: 9. [in Russian]

Huttunen H. Red Kite, Milvus milvus X Black Kite, Milvus migrans?; 2016. Available from <http://www.tarsiger.com/gallery/index.php?pic_id=william1083319444&lang=eng>, accessed on 12-Apr-2016.

Smith LJ, Braylan RC, Nutkis JW, Edmundson KB, Downing JR, Wakeland EK. Extraction of cellular DNA from human cells and tissues fixed in ethanol. Anal Biochem. 1987; 160: 135–138. PubMed

Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004; 2: e312 PubMed PMC

Dove CJ, Rotzel NC, Heacker M, Weigt LA. Using DNA barcodes to identify bird species involved in birdstrikes. J Wildl Manag. 2008; 72: 1231–1236.

Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogen Evol. 1999; 12: 105–114. PubMed

Johnson JA, Watson RT, Mindell DP. Prioritizing species conservation: does the Cape Verde kite exist? Proc Biol Sci. 2005; 272: 1365–1371. PubMed PMC

Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun MJ. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst Biol. 2003; 52: 385–402. PubMed

Fridolfsson A-K, Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol. 1999; 30: 116–121.

Schindel DE, Stoeckle MY, Milensky C, Trizna M, Schmidt B, Gebhard C, et al. Project description: DNA barcodes of bird species in the National Museum of Natural History, Smithsonian Institution, USA. Zookeys. 2011; 152: 87–92. 10.3897/zookeys.152.2473 PubMed DOI PMC

Aliabadian M, Beentjes KK, Roselaar CS, van Brandwijk H, Nijman V, Vonk R. DNA barcoding of Dutch birds. Zookeys. 2013; 365: 25–48. 10.3897/zookeys.365.6287 PubMed DOI PMC

Echi PC, Suresh KU, George S, Ratheesh RV, Ezeonu IM, Ejere VC, et al. Molecular resolution of some West African birds using DNA barcoding. Environ. Conserv J. 2015; 16: 87–92.

Saitoh T, Sugita N, Someya S, Iwami Y, Kobayashi S, Kamigaichi H, et al. DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Mol Ecol Resour. 2015; 15: 177–186. 10.1111/1755-0998.12282 PubMed DOI

Gaikwad SS, Munot H, Shouche YS. Utility of DNA barcoding for identification of bird-strike samples from India. Curr Sci. 2016; 110: 25–28.

Seibold I, Helbig AJ. Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond, B, Biol Sci. 1995; 350: 163–178. PubMed

Seibold I, Helbig AJ. Phylogenetic relationships of the sea eagles (genus Haliaeetus): reconstructions based on morphology, allozymes and mitochondrial DNA sequences. J Zool Syst Evol Res. 1996; 34: 103–112.

Lerner HR, Mindell DP. Phylogeny of eagles, Old World vultures and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol. 2005; 37: 327–346. PubMed

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene geneaologies. Mol Ecol. 2000; 9: 1657–1660. PubMed

Wink M, Sauer-Gürth H. Advances in the molecular systematics of African raptors In: Chancellor R.D., Meyburg B.-U. (Eds.). Raptors at Risk. Berlin: WWGBP; 2000. pp. 135–147.

Scheider J, Wink M, Stubbe M, Hille S, Wiltschko W. Phylogeographic relationships of the Black Kite Milvus migrans In: Meyburg B-U, Chancellor RD (Eds). Raptors Worldwide. Berlin: WWGBP/MME; 2004. pp. 467–472.

Sibley GC, Monroe BL Jr. Distribution and Taxonomy of Birds of the World. New Haven: Yale University Press; 1990.

Legendre P, Legendre L. Numerical Ecology, 2nd English edition Amsterdam: Elsevier; 1998.

Roques S, Negro JJ. MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (Milvus milvus). Biol Conserv. 2005; 126: 41–50.

Schreiber A, Stubbe M, Stubbe A. Red kite (Milvus milvus) and black kite (M. migrans): minute genetic interspecies distance of two raptors breeding in a mixed community (Falconiformes: Accipitridae). Biol J Linn Soc. 2000; 69: 351–365.

Oatley G, Simmons RE, Fuchs J. A molecular phylogeny of the harriers (Circus, Accipitridae) indicate the role of long distance dispersal and migration in diversification. Mol Phylogenet Evol. 2015; 85: 150–160. 10.1016/j.ympev.2015.01.013 PubMed DOI

Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour. 2014; 14: 778–788. 10.1111/1755-0998.12234 PubMed DOI

Matsuki R. Species identification method of birds. Patent JP 2013106562-A 37. Central Research Institute of Electric Power Industry; 2013.

Hewitt GM. Quaternary phylogeography: the roots of hybrid zones. Genetica. 2011; 139: 617–638. 10.1007/s10709-011-9547-3 PubMed DOI

Stewart JR, Lister AM. Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol. 2011; 16: 608–613.

Garcia JT, Mañosa S, Morales MB, Ponjoan A, García de la Morena EL, Bota G, et al. Genetic consequences of interglacial isolation in a steppe bird. Mol Phylogen Evol. 2011; 61: 671–676. PubMed

Shrubb M. Birds, Scythes and combines: A history of birds and agricultural change. Cambridge: Cambridge University Press; 2003.

Buggs RJA. Empirical study of hybrid zone movement. Heredity. 2007; 9: 301–312. PubMed

Evans I, Pienkowski M. World status of the Red Kite: A background to the experimental reintroduction to England and Scotland. Brit Birds. 1991; 84: 171–187.

Lansfeld B. Odhad počtu párů dravců a vybraných druhů sov v ČR. Zpravodaj SOVDS. 2013; 13: 3.

Rak D. Luňák červený (Milvus milvus). Zpravodaj SOVDS. 2016; 16: 14–16.

Gahura V. Luňák hnědý (Milvus migrans). Zpravodaj SOVDS. 2016; 16: 17–18.

Piehler H-M. Knochenfunde von Wildvögeln aus archäologischen Grabungen in Mitteleuropa: (Zeitraum: Neolithikum bis Mittelalter). Diss. med. vet. Thesis. München: Ludwig-Maximilians-Universität; 1976.

Becker C, Johannson F. Die neolithischen Ufersiedlungen von Twann, Kanton Bern—Tierknochenfunde. Bern: Staatlicher Lehrmittelverlag; 1981.

Peters G, Heinrich WD, Beaurton P, Jäger K-D. Fossile und rezente Dachsbauten mit Massenansammlungen von Wirbeltierknochen. Mitt Zool Mus Berlin. 1972; 48: 415–435.

Pfannhauser R. Tierknochenfunde aus der spätrömischen Anlage auf der Burg Sponeck bei Jechtingen, Krs. Emmendingen. Diss. med. vet. Thesis. München: Ludwig-Maximilians-Universität; 1980.

Teichert M, Müller R. Die Wildtierreste aus der ur- und frühgeschichtlichen Siedlung bei Niederorla, Unstrut-Hainich-Kreis. Weimarer Monographien zur Ur- und Frühgeschichte, Beiträge Archäozoologie. 1996; 8: 51–62.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evidence of genetic determination of annual movement strategies in medium-sized raptors

. 2025 Jan 25 ; 15 (1) : 3159. [epub] 20250125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...