Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27463515
PubMed Central
PMC4962980
DOI
10.1371/journal.pone.0159202
PII: PONE-D-16-18681
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro genetika MeSH
- cytochromy b genetika MeSH
- ekosystém * MeSH
- Falconiformes * MeSH
- haplotypy MeSH
- mitochondriální DNA genetika MeSH
- respirační komplex IV genetika MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- cytochromy b MeSH
- mitochondriální DNA MeSH
- respirační komplex IV MeSH
Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs.
Charles University Prague 3rd Faculty of Medicine Prague Czech Republic
Förderverein Sächsische Vogelschutzwarte Neschwitz e 5 Neschwitz Germany
Masaryk University Faculty of Science Department of Botany and Zoology Brno Czech Republic
Zobrazit více v PubMed
Storchová R, Gregorová S, Buckiová D, Kyselová V, Divina P, Forejt J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm Genome. 2004; 15: 515–524. PubMed
Mihola O, Trachtulec Z, Vlček Č, Schimenti JC, Forejt J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science. 2009; 323: 373–375. 10.1126/science.1163601 PubMed DOI
Phadnis N, Orr HA. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science. 2009; 323: 376–379. 10.1126/science.1163934 PubMed DOI PMC
McCarthy EM. Handook of avian hybrids of the world. New York: Oxford University Press; 2006.
Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. J Genet. 1922; 12: 101–109.
Helbig AJ, Seibold I, Kocum A, Liebers D, Irwin J, Bergmanis U, et al. Genetic differentiation and hybridization between greater and lesser spotted eagles (Accipitriformes: Aquila clanga, A. pomarina). J Ornithol. 2005; 146: 226–234.
Fefelov IV. Comparative breeding ecology and hybridization of Eastern and Western Marsh Harriers Circus spilonotus and C. aeruginosus in the Baikal region of eastern Siberia. Ibis. 2001; 143: 587–592.
Bird J, Butchart S, Derhé M, Ekstrom J, Harding M, Taylor J, et al. Milvus milvus. The IUCN Red List of Threatened Species 2013; 2013. BirdLife International. Available from <10.2305/IUCN.UK.2013-2.RLTS.T22695072A40741496.en>; accessed 23-Mar-2016. DOI
Ferguson-Lees J, Christie DA. Raptors of the World Helm Identification Guides. London: Christopher Helm; 2001.
Literák I, Matušík H, Rác P. Luňáci, jejich variabilita a hybridizace. Živa. 2014; 62: 35–39.
Ortlieb R. Der Rotmilan. Neue Brehm-Bücherei 532. A. Wittenberg Lutherstadt: Ziemsen Verlag; 1989.
Wobus U, Creutz G. Eine erfolgreiche Mischbrut von Rot-und Schwarzmilan (Milvus milvus × Milvus migrans). Zool Abh Mus Tierkd Dresden. 1970; 31: 305–313.
Sylvén M. Hybridisering mellan glada Milvus milvus och brun glada M. migrans I Sverige 1976. Vår Fågelvärld. 1977; 36: 38–44.
Looft V, Busche G. Vogelwelt Schleswig-Holsteins, Greifvögel. Neumünster: Karl Wachholtz Verlag; 1981.
Ortlieb R. Der Schwarzmilan. Neue Brehm-Bücherei 100. Hohenwarsleben: Westarp-Wissenschaften; 1998.
Freere PJ. Unidentified Milvus kites in Kenya. Gabar. 1987; 2: 47–48.
Monsén B. Häcking av Brunglada × Hybridglada I Värmland 1981. Värmlandsornithologen. 1987; 15: 13–15.
Bijlsma RB. Unidentified Kenyan kites—hybrid black × red? Gabar. 1988; 3: 19–20.
Corso A, Palumbo G. Prima osservazione italiana di ibrido tra Nibio reale Milvus milvus e Nibio Bruno Milvus migrans. Picus. 2001; 27: 31–33.
Dörrie HH. Avifaunischer Jahresbericht 2000 für den Raum Göttingen und Nordheim. Naturkundl Ber Fauna Süd-Niedersachsen. 2001; 6: 5–121.
Berndt RK, Koop B, Struwe-Juhl B. Vogelwelt Schleswig-Holsteins, Bd. 5: Brutvogelatlas. Neumünster: Wachholtz Verlag; 2002.
Dittberner H, Dittberner W. Der Rotmilan—ein Greifvogel der Insel Rügen. Rugia Journal. 2002; 2002: 81–85.
Nachtigall W, Gleichner W. Mischbruten zwischen Rot- Milvus milvus und Schwarzmilan M. migrans–ein weiterer Fall aus Sachsen. Limicola. 2005; 19: 180–194.
Woolley S. An unusual kite at Cheesefoot Head in early 2003 In: Hampshire Bird Report 2004. Basingstoke: Hampshire Ornithological Society; 2005. pp. 215–219.
Schmidt M, Schmidt R. Langjährig erfolgreiches Mischbrutpaar von Schwarz- (Milvus migrans) und Rotmilan (Milvus milvus) in Schleswig-Holstein. Corax. 2006; 20: 165–178.
Stübing S, Fichtler M. Hybriden zwischen Rot- Milvus milvus und Schwarzmilan M. migrans: Vorkommen, Verwechslungsgefahren und eine neue Beobachtung aus Hessen. Limicola 2006; 20: 169–186.
Forsman D, Nye D. A hybrid Red Kite × Black Kite in Cyprus. Birding World. 2007; 20: 480–481.
Mindlin G. Red and black. Ptushki i My. 2015; 26: 9. [in Russian]
Huttunen H. Red Kite, Milvus milvus X Black Kite, Milvus migrans?; 2016. Available from <http://www.tarsiger.com/gallery/index.php?pic_id=william1083319444&lang=eng>, accessed on 12-Apr-2016.
Smith LJ, Braylan RC, Nutkis JW, Edmundson KB, Downing JR, Wakeland EK. Extraction of cellular DNA from human cells and tissues fixed in ethanol. Anal Biochem. 1987; 160: 135–138. PubMed
Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004; 2: e312 PubMed PMC
Dove CJ, Rotzel NC, Heacker M, Weigt LA. Using DNA barcodes to identify bird species involved in birdstrikes. J Wildl Manag. 2008; 72: 1231–1236.
Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogen Evol. 1999; 12: 105–114. PubMed
Johnson JA, Watson RT, Mindell DP. Prioritizing species conservation: does the Cape Verde kite exist? Proc Biol Sci. 2005; 272: 1365–1371. PubMed PMC
Harshman J, Huddleston CJ, Bollback JP, Parsons TJ, Braun MJ. True and false gharials: a nuclear gene phylogeny of Crocodylia. Syst Biol. 2003; 52: 385–402. PubMed
Fridolfsson A-K, Ellegren H. A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol. 1999; 30: 116–121.
Schindel DE, Stoeckle MY, Milensky C, Trizna M, Schmidt B, Gebhard C, et al. Project description: DNA barcodes of bird species in the National Museum of Natural History, Smithsonian Institution, USA. Zookeys. 2011; 152: 87–92. 10.3897/zookeys.152.2473 PubMed DOI PMC
Aliabadian M, Beentjes KK, Roselaar CS, van Brandwijk H, Nijman V, Vonk R. DNA barcoding of Dutch birds. Zookeys. 2013; 365: 25–48. 10.3897/zookeys.365.6287 PubMed DOI PMC
Echi PC, Suresh KU, George S, Ratheesh RV, Ezeonu IM, Ejere VC, et al. Molecular resolution of some West African birds using DNA barcoding. Environ. Conserv J. 2015; 16: 87–92.
Saitoh T, Sugita N, Someya S, Iwami Y, Kobayashi S, Kamigaichi H, et al. DNA barcoding reveals 24 distinct lineages as cryptic bird species candidates in and around the Japanese Archipelago. Mol Ecol Resour. 2015; 15: 177–186. 10.1111/1755-0998.12282 PubMed DOI
Gaikwad SS, Munot H, Shouche YS. Utility of DNA barcoding for identification of bird-strike samples from India. Curr Sci. 2016; 110: 25–28.
Seibold I, Helbig AJ. Evolutionary history of New and Old World vultures inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Philos Trans R Soc Lond, B, Biol Sci. 1995; 350: 163–178. PubMed
Seibold I, Helbig AJ. Phylogenetic relationships of the sea eagles (genus Haliaeetus): reconstructions based on morphology, allozymes and mitochondrial DNA sequences. J Zool Syst Evol Res. 1996; 34: 103–112.
Lerner HR, Mindell DP. Phylogeny of eagles, Old World vultures and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol. 2005; 37: 327–346. PubMed
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene geneaologies. Mol Ecol. 2000; 9: 1657–1660. PubMed
Wink M, Sauer-Gürth H. Advances in the molecular systematics of African raptors In: Chancellor R.D., Meyburg B.-U. (Eds.). Raptors at Risk. Berlin: WWGBP; 2000. pp. 135–147.
Scheider J, Wink M, Stubbe M, Hille S, Wiltschko W. Phylogeographic relationships of the Black Kite Milvus migrans In: Meyburg B-U, Chancellor RD (Eds). Raptors Worldwide. Berlin: WWGBP/MME; 2004. pp. 467–472.
Sibley GC, Monroe BL Jr. Distribution and Taxonomy of Birds of the World. New Haven: Yale University Press; 1990.
Legendre P, Legendre L. Numerical Ecology, 2nd English edition Amsterdam: Elsevier; 1998.
Roques S, Negro JJ. MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (Milvus milvus). Biol Conserv. 2005; 126: 41–50.
Schreiber A, Stubbe M, Stubbe A. Red kite (Milvus milvus) and black kite (M. migrans): minute genetic interspecies distance of two raptors breeding in a mixed community (Falconiformes: Accipitridae). Biol J Linn Soc. 2000; 69: 351–365.
Oatley G, Simmons RE, Fuchs J. A molecular phylogeny of the harriers (Circus, Accipitridae) indicate the role of long distance dispersal and migration in diversification. Mol Phylogenet Evol. 2015; 85: 150–160. 10.1016/j.ympev.2015.01.013 PubMed DOI
Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Resour. 2014; 14: 778–788. 10.1111/1755-0998.12234 PubMed DOI
Matsuki R. Species identification method of birds. Patent JP 2013106562-A 37. Central Research Institute of Electric Power Industry; 2013.
Hewitt GM. Quaternary phylogeography: the roots of hybrid zones. Genetica. 2011; 139: 617–638. 10.1007/s10709-011-9547-3 PubMed DOI
Stewart JR, Lister AM. Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol. 2011; 16: 608–613.
Garcia JT, Mañosa S, Morales MB, Ponjoan A, García de la Morena EL, Bota G, et al. Genetic consequences of interglacial isolation in a steppe bird. Mol Phylogen Evol. 2011; 61: 671–676. PubMed
Shrubb M. Birds, Scythes and combines: A history of birds and agricultural change. Cambridge: Cambridge University Press; 2003.
Buggs RJA. Empirical study of hybrid zone movement. Heredity. 2007; 9: 301–312. PubMed
Evans I, Pienkowski M. World status of the Red Kite: A background to the experimental reintroduction to England and Scotland. Brit Birds. 1991; 84: 171–187.
Lansfeld B. Odhad počtu párů dravců a vybraných druhů sov v ČR. Zpravodaj SOVDS. 2013; 13: 3.
Rak D. Luňák červený (Milvus milvus). Zpravodaj SOVDS. 2016; 16: 14–16.
Gahura V. Luňák hnědý (Milvus migrans). Zpravodaj SOVDS. 2016; 16: 17–18.
Piehler H-M. Knochenfunde von Wildvögeln aus archäologischen Grabungen in Mitteleuropa: (Zeitraum: Neolithikum bis Mittelalter). Diss. med. vet. Thesis. München: Ludwig-Maximilians-Universität; 1976.
Becker C, Johannson F. Die neolithischen Ufersiedlungen von Twann, Kanton Bern—Tierknochenfunde. Bern: Staatlicher Lehrmittelverlag; 1981.
Peters G, Heinrich WD, Beaurton P, Jäger K-D. Fossile und rezente Dachsbauten mit Massenansammlungen von Wirbeltierknochen. Mitt Zool Mus Berlin. 1972; 48: 415–435.
Pfannhauser R. Tierknochenfunde aus der spätrömischen Anlage auf der Burg Sponeck bei Jechtingen, Krs. Emmendingen. Diss. med. vet. Thesis. München: Ludwig-Maximilians-Universität; 1980.
Teichert M, Müller R. Die Wildtierreste aus der ur- und frühgeschichtlichen Siedlung bei Niederorla, Unstrut-Hainich-Kreis. Weimarer Monographien zur Ur- und Frühgeschichte, Beiträge Archäozoologie. 1996; 8: 51–62.