The Expression of T Cell FOXP3 and T-Bet Is Upregulated in Severe but Not Euthyroid Hashimoto's Thyroiditis

. 2016 ; 2016 () : 3687420. [epub] 20160705

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27478306

Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disorder characterized by progressive thyroid failure. Th1 and Treg subset of CD4(+) cells have been implicated in the pathogenesis; however, less is known about their respective roles across the spectrum of HT clinical presentations. To shed more light on CD4(+) subsets role in HT, we investigated the mRNA expression levels of several Th1/Treg-associated transcription factors (T-bet/ETS1, HIF1α/BLIMP1/FOXP3) in peripheral blood T cells of 10 hypothyroid, untreated HT patients, 10 hypothyroid patients undergoing hormone replacement therapy, 12 euthyroid HT subjects, and 11 healthy controls by the qRT-PCR. Compared to euthyroid HT patients and controls, both hypothyroid (2.34-fold difference versus controls, P < 0.01) and thyroxine-supplemented patients (2.5-fold, P < 0.001) showed an increased FOXP3 mRNA expression in T cells. Similarly, mRNA expression levels of T-bet were upregulated in severely affected but not in euthyroid HT subjects (2.37-fold and 3.2-fold, hypothyroid and thyroxine-supplemented HT patients versus controls, resp., P < 0.01). By contrast, no differences in mRNA expression levels of ETS1, BLIMP1, and HIF1α were observed across the study groups. In summary, severe but not euthyroid HT was associated with robust upregulation of T-bet and FOXP3 mRNA in peripheral T cells, independent of the thyroid hormone status but proportional to disease activity.

Zobrazit více v PubMed

Stassi G., De Maria R. Autoimmune thyroid disease: new models of cell death in autoimmunity. Nature Reviews Immunology. 2002;2(3):195–204. doi: 10.1038/nri750. PubMed DOI

Horie I., Abiru N., Nagayama Y., et al. T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology. 2009;150(11):5135–5142. doi: 10.1210/en.2009-0434. PubMed DOI

Figueroa-Vega N., Alfonso-Pérez M., Benedicto I., Sánchez-Madrid F., González-Amaro R., Marazuela M. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto's thyroiditis. Journal of Clinical Endocrinology and Metabolism. 2010;95(2):953–962. doi: 10.1210/jc.2009-1719. PubMed DOI

Shi Y., Wang H., Su Z., et al. Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto's thyroiditis. Scandinavian Journal of Immunology. 2010;72(3):250–255. doi: 10.1111/j.1365-3083.2010.02425.x. PubMed DOI

Li D., Cai W., Gu R., et al. Th17 cell plays a role in the pathogenesis of Hashimoto's thyroiditis in patients. Clinical Immunology. 2013;149:411–420. doi: 10.1016/j.clim.2013.10.001. PubMed DOI

Nanba T., Watanabe M., Inoue N., Iwatani Y. Increases of the Th1/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease. Thyroid. 2009;19(5):495–501. doi: 10.1089/thy.2008.0423. PubMed DOI

Liu Y., Tang X., Tian J., et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto’s thyroiditis. International Journal of Molecular Sciences. 2014;15(12):21674–21686. doi: 10.3390/ijms151221674. PubMed DOI PMC

Xue H., Yu X., Ma L., et al. The possible role of CD4+CD25highFoxp3+/CD4+IL-17A+ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine. 2015;50(3):665–673. doi: 10.1007/s12020-015-0569-y. PubMed DOI

Grenningloh R., Bok Y. K., Ho I.-C. Ets-1, a functional cofactor of T-bet, is essential for Th1 inflammatory responses. Journal of Experimental Medicine. 2005;201(4):615–626. doi: 10.1084/jem.20041330. PubMed DOI PMC

Tsao H.-W., Tai T.-S., Tseng W., et al. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(39):15776–15781. doi: 10.1073/pnas.1304343110. PubMed DOI PMC

Mouly E., Chemin K., Nguyen H. V., et al. The Ets-1 transcription factor controls the development and function of natural regulatory T cells. Journal of Experimental Medicine. 2010;207(10):2113–2125. doi: 10.1084/jem.20092153. PubMed DOI PMC

Cimmino L., Martins G. A., Liao J., et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. Journal of Immunology. 2008;181(4):2338–2347. doi: 10.4049/jimmunol.181.4.2338. PubMed DOI

Martins G. A., Cimmino L., Liao J., Magnusdottir E., Calame K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. Journal of Experimental Medicine. 2008;205(9):1959–1965. doi: 10.1084/jem.20080526. PubMed DOI PMC

Cretney E., Xin A., Shi W., et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology. 2011;12(4):304–311. doi: 10.1038/ni.2006. PubMed DOI

Dang E. V., Barbi J., Yang H.-Y., et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–784. doi: 10.1016/j.cell.2011.07.033. PubMed DOI PMC

Štefanić M., Papić S., Suver M., Glavaš-Obrovac L., Karner I. Association of vitamin D receptor gene 3'-variants with Hashimoto's thyroiditis in the Croatian population. International Journal of Immunogenetics. 2008;35(2):125–131. doi: 10.1111/j.1744-313x.2008.00748.x. PubMed DOI

Böyum A. Separation of leukocytes from blood and bone marrow. Introduction. Scandinavian Journal of Clinical And Laboratory Investigation, Supplementum. 1968;97, article 7 PubMed

Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry. 1987;162(1):156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI

Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 2001;29(9, article e45) doi: 10.1093/nar/29.9.e45. PubMed DOI PMC

Horie I., Abiru N., Sakamoto H., Iwakura Y., Nagayama Y. Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-γ receptor, knockout nonobese diabetic-H2h4 mice. Endocrinology. 2011;152(11):4448–4454. doi: 10.1210/en.2011-1356. PubMed DOI

Oh S., Hwang E. S. The role of protein modifications of T-bet in cytokine production and differentiation of t helper cells. Journal of Immunology Research. 2014;2014:7. doi: 10.1155/2014/589672.589672 PubMed DOI PMC

Qin Q., Liu P., Liu L., et al. The increased but non-predominant expression of Th17- and Th1-specific cytokines in hashimoto's thyroiditis but not in graves' disease. Brazilian Journal of Medical and Biological Research. 2012;45(12):1202–1208. doi: 10.1590/s0100-879x2012007500168. PubMed DOI PMC

Karanikas G., Schuetz M., Wahl K., et al. Relation of anti-TPO autoantibody titre and T-lymphocyte cytokine production patterns in Hashimoto's thyroiditis. Clinical Endocrinology. 2005;63(2):191–196. doi: 10.1111/j.1365-2265.2005.02324.x. PubMed DOI

Gérard A.-C., Boucquey M., Van Den Hove M.-F., Colin I. M. Expression of TPO and ThOXs in human thyrocytes is downregulated by IL-1α/IFN-γ, an effect partially mediated by nitric oxide. American Journal of Physiology—Endocrinology and Metabolism. 2006;291(2):E242–E253. doi: 10.1152/ajpendo.00439.2005. PubMed DOI

Marique L., Van Regemorter V., Gérard A.-C., et al. The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders. Journal of Clinical Endocrinology and Metabolism. 2014;99(5):1722–1732. doi: 10.1210/jc.2013-3469. PubMed DOI

Su H. W., Bretz J. D., Phelps E., et al. A unique combination of inflammatory cytokines enhances apoptosis of thyroid follicular cells and transforms nondestructive to destructive thyroiditis in experimental autoimmune thyroiditis. Journal of Immunology. 2002;168(5):2470–2474. doi: 10.4049/jimmunol.168.5.2470. PubMed DOI

Marazuela M., García-López M. A., Figueroa-Vega N., et al. Regulatory T cells in human autoimmune thyroid disease. Journal of Clinical Endocrinology and Metabolism. 2006;91(9):3639–3646. doi: 10.1210/jc.2005-2337. PubMed DOI

De Rosa V., Galgani M., Porcellini A., et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nature Immunology. 2015;16(11):1174–1184. doi: 10.1038/ni.3269. PubMed DOI PMC

Kristensen B., Hegedüs L., Madsen H. O., Smith T. J., Nielsen C. H. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis. Clinical and Experimental Immunology. 2015;180(1):58–69. doi: 10.1111/cei.12557. PubMed DOI PMC

Ryder L. R., Woetmann A., Madsen H. O., et al. Expression of full-length and splice forms of FoxP3 in rheumatoid arthritis. Scandinavian Journal of Rheumatology. 2010;39(4):279–286. doi: 10.3109/03009740903555374. PubMed DOI

Ban H., Andoh A., Shioya M., Nishida A., Tsujikawa T., Fujiyama Y. Increased number of FoxP3+CD4+ regulatory T cells in inflammatory bowel disease. Molecular Medicine Reports. 2008;1(5):647–650. PubMed

Nakano A., Watanabe M., Iida T., et al. Apoptosis-induced decrease of intrathyroidal CD4+CD25+ regulatory T cells in autoimmune thyroid diseases. Thyroid. 2007;17(1):25–31. doi: 10.1089/thy.2006.0231. PubMed DOI

Mao C., Wang S., Xiao Y., et al. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves' disease. Journal of Immunology. 2011;186(8):4734–4743. doi: 10.4049/jimmunol.0904135. PubMed DOI

van Amelsfort J. M. R., Jacobs K. M. G., Bijlsma J. W. J., Lafeber F. P. J. G., Taams L. S. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis and Rheumatism. 2004;50(9):2775–2785. doi: 10.1002/art.20499. PubMed DOI

González-Amaro R., Marazuela M. T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity. Endocrine. 2016;52(1):30–38. doi: 10.1007/s12020-015-0759-7. PubMed DOI

Veldhoen M., Hocking R. J., Atkins C. J., Locksley R. M., Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189. doi: 10.1016/j.immuni.2006.01.001. PubMed DOI

Li L., Boussiotis V. A. Molecular and functional heterogeneity of T regulatory cells. Clinical Immunology. 2011;141(3):244–252. doi: 10.1016/j.clim.2011.08.011. PubMed DOI PMC

Koch M. A., Tucker-Heard G., Perdue N. R., Killebrew J. R., Urdahl K. B., Campbell D. J. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunology. 2009;10(6):595–602. doi: 10.1038/ni.1731. PubMed DOI PMC

Yu F., Sharma S., Edwards J., Feigenbaum L., Zhu J. Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nature Immunology. 2015;16(2):197–206. doi: 10.1038/ni.3053. PubMed DOI PMC

Tian L., Altin J. A., Makaroff L. E., et al. Foxp3+ regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis. Blood. 2011;118(7):1845–1853. doi: 10.1182/blood-2011-04-346056. PubMed DOI PMC

Hua J., Davis S. P., Hill J. A., Yamagata T. Diverse gene expression in human Regulatory T cell subsets uncovers connection between regulatory T cell genes and suppressive function. Journal of Immunology. 2015;195(8):3642–3653. doi: 10.4049/jimmunol.1500349. PubMed DOI

Li X., Liang Y., Leblanc M., Benner C., Zheng Y. Function of a foxp3 cis-element in protecting regulatory T cell identity. Cell. 2014;158(4):734–748. doi: 10.1016/j.cell.2014.07.030. PubMed DOI PMC

Lin M. H., Yeh L. T., Chen S. J., et al. T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in nonobese diabetic mice by increasing Th1 and Th17 cells. Clinical Immunology. 2014;151(2):101–113. doi: 10.1016/j.clim.2014.02.006. PubMed DOI

Moisan J., Grenningloh R., Bettelli E., Oukka M., Ho I.-C. Ets-1 is a negative regulator of Th17 differentiation. Journal of Experimental Medicine. 2007;204(12):2825–2835. doi: 10.1084/jem.20070994. PubMed DOI PMC

Polansky J. K., Schreiber L., Thelemann C., et al. Methylation matters: Binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. Journal of Molecular Medicine. 2010;88(10):1029–1040. doi: 10.1007/s00109-010-0642-1. PubMed DOI PMC

Cretney E., Xin A., Shi W., et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunology. 2011;12(4):304–312. doi: 10.1038/ni.2006. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

miR-29a-3p/T-bet Regulatory Circuit Is Altered in T Cells of Patients With Hashimoto's Thyroiditis

. 2018 ; 9 () : 264. [epub] 20180524

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...