• This record comes from PubMed

Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression

. 2016 Aug 03 ; 8 (350) : 350ra104.

Language English Country United States Media print

Document type Journal Article

Grant support
P01 CA066996 NCI NIH HHS - United States
P01 HL131477 NHLBI NIH HHS - United States
P30 CA006516 NCI NIH HHS - United States
P50 CA090578 NCI NIH HHS - United States
R35 CA197697 NCI NIH HHS - United States

Lung cancer is the most common cause of cancer deaths. The expression of the transcription factor C/EBPα (CCAAT/enhancer binding protein α) is frequently lost in non-small cell lung cancer, but the mechanisms by which C/EBPα suppresses tumor formation are not fully understood. In addition, no pharmacological therapy is available to specifically target C/EBPα expression. We discovered a subset of pulmonary adenocarcinoma patients in whom negative/low C/EBPα expression and positive expression of the oncogenic protein BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) have prognostic value. We also generated a lung-specific mouse model of C/EBPα deletion that develops lung adenocarcinomas, which are prevented by Bmi1 haploinsufficiency. BMI1 activity is required for both tumor initiation and maintenance in the C/EBPα-null background, and pharmacological inhibition of BMI1 exhibits antitumor effects in both murine and human adenocarcinoma lines. Overall, we show that C/EBPα is a tumor suppressor in lung cancer and that BMI1 is required for the oncogenic process downstream of C/EBPα loss. Therefore, anti-BMI1 pharmacological inhibition may offer a therapeutic benefit for lung cancer patients with low expression of C/EBPα and high BMI1.

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA Division of Hematology and Oncology Department of Medicine University of Alabama at Birmingham Birmingham AL 35233 USA

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA Hematology Division Department of Internal Medicine Ribeirao Preto Medical School University of São Paulo São Paulo 14020 Brazil

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA Institute of Biomedical Technologies National Research Council Pisa 56124 Italy

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA Institute of Molecular Genetics of the ASCR Prague 14200 Czech Republic

Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Stem Cell and Developmental Biology Genome Institute of Singapore Singapore 138672 Singapore

Biochemistry Department Chemistry Institute University of São Paulo São Paulo 05508 Brazil Beth Israel Deaconess Medical Center Boston MA 02215 USA Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA

Cancer Science Institute National University of Singapore Singapore 117599 Singapore

Cancer Science Institute National University of Singapore Singapore 117599 Singapore Department of Haematology Oncology University of Western Australia Crawley Western Australia 6009 Australia

Cancer Science Institute National University of Singapore Singapore 117599 Singapore Harvard Medical School Boston MA 02215 USA Harvard Stem Cell Institute Boston MA 02215 USA

Department of Biostatistics and Computational Biology Dana Farber Cancer Institute Boston MA 02215 USA

Department of Cellular and Molecular Medicine Graduate School of Medicine Chiba University Chiba 260 8670 Japan

Department of Pathology and Laboratory Medicine KK Women's and Children's Hospital Singapore 119074 Singapore

Department of Pathology Weill Cornell University Medical Center New York NY 10065 USA

Division of Hematology Oncology Montefiore Hospital Bronx NY 10461 USA

Institute of Biomedical Technologies National Research Council Pisa 56124 Italy

Laboratory of Receptor Biology and Gene Expression National Cancer Institute National Institutes of Health Bethesda MD 20817 USA

PTC Therapeutics 100 Corporate Court South Plainfield NJ 07080 USA

See more in PubMed

Siegel R, Naishadham D, Jemal A, Cancer statistics, 2012. CA Cancer J. Clin 62, 10–29 (2012). PubMed

Tada Y, Brena RM, Hackanson B, Morrison C, Otterson GA, Plass C, Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein a activity in lung cancer. J. Natl. Cancer Inst 98, 396–406 (2006). PubMed

Girard L, Zöchbauer-Müller S, Virmani AK, Gazdar AF, Minna JD, Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 60, 4894–4906 (2000). PubMed

Koschmieder S, Halmos B, Levantini E, Tenen DG, Dysregulation of the C/EBPα differentiation pathway in human cancer. J. Clin. Oncol 27, 619–628 (2009). PubMed PMC

Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG, Dominant-negative mutations of CEBPΑ, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. Nat. Genet 27, 263–270 (2001). PubMed

Koschmieder S, D’Alò F, Radomska H, Schöneich C, Chang JS, Konopleva M, Kobayashi S, Levantini E, Suh N, Di Ruscio A, Voso MT, Watt JC, Santhanam R, Sargin B, Kantarjian H, Andreeff M, Sporn MB, Perrotti D, Berdel WE, Müller-Tidow C, Serve H, Tenen DG, CDDO induces granulocytic differentiation of myeloid leukemic blasts through translational up-regulation of p42 CCAAT enhancer–binding protein alpha. Blood 110, 3695–3705 (2007). PubMed PMC

Tenen DG, Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89–101 (2003). PubMed

Tan EH, Hooi SC, Laban M, Wong E, Ponniah S, Wee A, Wang N.-d., CCAAT/enhancer binding protein a knock-in mice exhibit early liver glycogen storage and reduced susceptibility to hepatocellular carcinoma. Cancer Res. 65, 10330–10337 (2005). PubMed

Oh H-S, Smart RC, Expression of CCAAT/enhancer binding proteins (C/EBP) is associated with squamous differentiation in epidermis and isolated primary keratinocytes and is altered in skin neoplasms. J. Invest. Dermatol 110, 939–945 (1998). PubMed

Bennett KL, Hackanson B, Smith LT, Morrison CD, Lang JC, Schuller DE, Weber F, Eng C, Plass C, Tumor suppressor activity of CCAAT/enhancer binding protein a is epigenetically down-regulated in head and neck squamous cell carcinoma. Cancer Res. 67, 4657–4664 (2007). PubMed

Yin H, Radomska HS, Tenen DG, Glass J, Down regulation of PSA by C/EBPα is associated with loss of AR expression and inhibition of PSA promoter activity in the LNCaP cell line. BMC Cancer 6, 158 (2006). PubMed PMC

Flodby P, Barlow C, Kylefjord H, Åhrlund-Richter L, Xanthopoulos KG, Increased hepatic cell proliferation and lung abnormalities in mice deficient in CCAAT/enhancer binding protein a. J. Biol. Chem 271, 24753–24760 (1996). PubMed

Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR, Darlington GJ, Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269, 1108–1112 (1995). PubMed

Bassères DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, Fenyus M, Kocher O, Golub T, K.-k. Wong, B. Halmos, D. G. Tenen, Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPα in mice. Mol. Cell. Biol 26, 1109–1123 (2006). PubMed PMC

Martis PC, Whitsett JA, Xu Y, Perl A-K, Wan H, Ikegami M, C/EBPα is required for lung maturation at birth. Development 133, 1155–1164 (2006). PubMed

Halmos B, Huettner CS, Kocher O, Ferenczi K, Karp DD, Tenen DG, Down-regulation and antiproliferative role of C/EBPα in lung cancer. Cancer Res. 62, 528–534 (2002). PubMed

Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM, Shigematsu H, Levantini E, Huettner CS, Lekstrom-Himes JA, Akashi K, Tenen DG, Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004). PubMed

Zhu C-Q, Ding K, Strumpf D, Weir BA, Meyerson M, Pennell N, Thomas RK, Naoki K, Ladd-Acosta C, Liu N, Pintilie M, Der S, Seymour L, Jurisica I, Shepherd FA, Tsao M-S, Prognostic and predictive gene signature for adjuvant chemotherapy in resected non–small-cell lung cancer. J. Clin. Oncol 28, 4417–4424 (2010). PubMed PMC

Der SD, Sykes J, Pintilie M, Zhu C-Q, Strumpf D, Liu N, Jurisica I, Shepherd FA, Tsao M-S, Validation of a histology-independent prognostic gene signature for early-stage, non–small-cell lung cancer including stage IA patients. J. Thorac. Oncol 9, 59–64 (2014). PubMed

Tang H, Xiao G, Behrens C, Schiller J, Allen J, Chow C-W, Suraokar M, Corvalan A, Mao J, White MA, Wistuba II, Minna JD, Xie Y, A 12-gene set predicts survival benefits from adjuvant chemotherapy in non–small cell lung cancer patients. Clin. Cancer Res 19, 1577–1586 (2013). PubMed PMC

Hosen N, Yamane T, Muijtjens M, Pham K, Clarke MF, Weissman IL, Bmi-1-green fluorescent protein-knock-in mice reveal the dynamic regulation of Bmi-1 expression in normal and leukemic hematopoietic cells. Stem Cells 25, 1635–1644 (2007). PubMed

Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W, Sydorenko N, Moon Y-C, Gibson L, Wang Y, Leung C, N Iscove N, Arrowsmith CH, Szentgyorgyi E, Gallinger S, Dick JE, O’Brien CA, Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med 20, 29–36 (2014). PubMed

Douglas D, Hsu JH-R, Hung L, Cooper A, Abdueva D, van Doorninck J, Peng G, Shimada H, Triche TJ, Lawlor ER, BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res. 68, 6507–6515 (2008). PubMed PMC

Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM, Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eμ-myc transgenic mice. Cell 65, 753–763 (1991). PubMed

Kim JH, Yoon SY, Jeong S-H, Kim SY, Moon SK, Joo JH, Lee Y, Choe IS, Kim JW, Overexpression of Bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast 13, 383–388 (2004). PubMed

Kim JH, Yoon SY, Kim C-N, Joo JH, Moon SK, Choe IS, Choe Y-K, Kim JW, TheBmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 203, 217–224 (2004). PubMed

Cui H, Hu B, Li T, Ma J, Alam G, Gunning WT, Ding H-F, Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am. J. Pathol 170, 1370–1378 (2007). PubMed PMC

Merkerova M, Bruchova H, Kracmarova A, Klamova H, Brdicka R, Bmi-1 over-expression plays a secondary role in chronic myeloid leukemia transformation. Leuk. Lymphoma 48, 793–801 (2007). PubMed

Lee K, Adhikary G, Balasubramanian S, Gopalakrishnan R, McCormick T, Dimri GP, Eckert RL, Rorke EA, Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. J. Invest. Dermatol 128, 9–17 (2008). PubMed PMC

Vrzalikova K, Skarda J, Ehrmann J, Murray PG, Fridman E, Kopolovic J, Knizetova P, Hajduch M, Klein J, Kolek V, Radova L, Kolar Z, Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients: A tissue microarray study. J. Cancer Res. Clin. Oncol 134, 1037–1042 (2008). PubMed

Koch L-K, Zhou H, Ellinger J, Biermann K, Höller T, von Rücker A, Büttner R, Gütgemann I, Stem cell marker expression in small cell lung carcinoma and developing lung tissue. Hum. Pathol 39, 1597–1605 (2008). PubMed

Vonlanthen S, Heighway J, Altermatt HJ, Gugger M, Kappeler A, Borner MM, van Lohuizen M, Betticher DC, The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br. J. Cancer 84, 1372–1376 (2001). PubMed PMC

Wicha MS, Targeting self-renewal, an Achilles’ heel of cancer stem cells. Nat. Med 20, 14–15 (2014). PubMed

Larmonie NSD, Dik WA, Beverloo HB, van Wering ER, van Dongen JJM, Langerak AW, BMI1 as oncogenic candidate in a novel TCRB-associated chromosomal aberration in a patient with TCRgd+ T-cell acute lymphoblastic leukemia. Leukemia 22, 1266–1267 (2008). PubMed

Dutton A, Woodman CB, Chukwuma MB, Last JIK, Wei W, Vockerodt M, Baumforth KRN, Flavell JR, Rowe M, Taylor AMR, Young LS, Murray PG, Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109, 2597–2603 (2007). PubMed

Guo W-J, Datta S, Band V, Dimri GP, Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol. Biol. Cell 18, 536–546 (2007). PubMed PMC

Johansen LM, Iwama A, Lodie TA, Sasaki K, Felsher DW, Golub TR, Tenen DG, C-Myc isa critical target for C/EBPα in granulopoiesis. Mol. Cell. Biol 21, 3789–3806 (2001). PubMed PMC

Thompson EA, Zhu S, Hall JR, House JS, Ranjan R, Burr JA, He Y-Y, Owens DM, Smart RC, C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas. J. Invest.Dermatol 131, 1339–1346 (2011). PubMed PMC

Ye M, Zhang H, Amabile G, Yang H, Staber PB, Zhang P, Levantini E, Alberich-Jordà M, Zhang J, Kawasaki A, Tenen DG, C/EBPα controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat. Cell Biol 15, 385–394 (2013). PubMed PMC

Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A, Welner RS, Ebralidze A, Zhang J, Levantini E, Lefebvre V, Valk PJM, Delwel R, Hoogenkamp M, Nerlov C, Cammenga J, Saez B, Scadden DT, Bonifer C, Ye M, Tenen DG, Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. Cancer Cell 24, 575–588 (2013). PubMed PMC

Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW, BMI1 as a novel target for drug discovery in cancer. J. Cell. Biochem 112, 2729–2741 (2011). PubMed

Dovey JS, Zacharek SJ, Kim CF, Lees JA, Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc. Natl. Acad. Sci. U.S.A 105, 11857–11862 (2008). PubMed PMC

Meng X, Wang Y, Zheng X, Liu C, Su B, Nie H, Zhao B, Zhao X, Yang H, ShRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell migration and metastasis. Lung Cancer 77, 24–30 (2012). PubMed

Oguro H, Iwama A, Morita Y, Kamijo T, van Lohuizen M, Nakauchi H, Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J. Exp. Med 203, 2247–2253 (2006). PubMed PMC

Euhus DM, Hudd C, LaRegina MC, Johnson FE, Tumor measurement in the nude mouse. J. Surg. Oncol 31, 229–234 (1986). PubMed

Chua S-W, Vijayakumar P, Nissom PM, Yam C-Y, Wong VVT, Yang H, A novel normalization method for effective removal of systematic variation in microarray data. Nucleic Acids Res. 34, e38 (2006). PubMed PMC

Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C, PACK: Profile analysis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics 22, 2269–2275 (2006). PubMed

Wang J, Wen S, Symmans WF, Pusztai L, Coombes KR, The bimodality index: A criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer Inform. 7, 199–216 (2009). PubMed PMC

Peltz SW, Welch EM, Trotta CR, Davis T, Jacobson A, Targeting post-transcriptional control for drug discovery. RNA Biol. 6, 329–334 (2009). PubMed

Bhattacharyya A, Trotta CR, Peltz SW, Mining the gems – a novel platform technology targeting post-transcriptional control mechanisms. Drug Discov. Today 12, 553–560 (2007). PubMed

See more in PubMed

ClinicalTrials.gov
NCT02404480

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...