POPs in a major conurbation in Turkey: ambient air concentrations, seasonal variation, inhalation and dermal exposure, and associated carcinogenic risks
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27552996
DOI
10.1007/s11356-016-7350-5
PII: 10.1007/s11356-016-7350-5
Knihovny.cz E-zdroje
- Klíčová slova
- Carcinogenic risk *, Exposure *, OCPs *, PAHs *, PCBs *, Persistent organic pollutants *,
- MeSH
- chlordan analýza MeSH
- chlorované uhlovodíky analýza MeSH
- DDT analýza MeSH
- endosulfan analýza MeSH
- heptachlor analýza MeSH
- hexachlorcyklohexan analýza MeSH
- karcinogeny životního prostředí analýza MeSH
- látky znečišťující vzduch analýza MeSH
- lidé MeSH
- monitorování životního prostředí * MeSH
- pesticidy analýza MeSH
- polychlorované bifenyly analýza MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- roční období * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Turecko MeSH
- Názvy látek
- alpha-hexachlorocyclohexane MeSH Prohlížeč
- beta-hexachlorocyclohexane MeSH Prohlížeč
- chlordan MeSH
- chlorované uhlovodíky MeSH
- DDT MeSH
- endosulfan MeSH
- heptachlor MeSH
- hexachlorcyklohexan MeSH
- karcinogeny životního prostředí MeSH
- látky znečišťující vzduch MeSH
- pesticidy MeSH
- polychlorované bifenyly MeSH
- polycyklické aromatické uhlovodíky MeSH
Semi-volatile organic compounds were monitored over a whole year, by collection of gas and particle phases every sixth day at a suburban site in Izmir, Turkey. Annual mean concentrations of 32 polychlorinated biphenyls (∑32PCBs) and 14 polycyclic aromatic hydrocarbons (∑14PAHs) were 348 pg/m3 and 36 ng/m3, respectively, while it was 273 pg/m3 for endosulfan, the dominant compound among 23 organochlorine pesticides (OCPs). Monte Carlo simulation was applied to the USEPA exposure-risk models for the estimation of the population exposure and carcinogenic risk probability distributions for heating and non-heating periods. The estimated population risks associated with dermal contact and inhalation routes to ∑32PCBs, ∑14PAHs, and some of the targeted OCPs (α-hexachlorocyclohexane (α-HCH), β-hexachlorocyclohexane (β-HCH), heptachlor, heptachlor epoxide, α-chlordane (α-CHL), γ-chlordane (γ-CHL), and p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT)) were in the ranges of 1.86 × 10-16-7.29 × 10-9 and 1.38 × 10-10-4.07 × 10-6, respectively. The inhalation 95th percentile risks for ∑32PCBs, ∑14PAHs, and OCPs were about 6, 3, and 4-7 orders of magnitude higher than those of dermal route, respectively. The 95th percentile inhalation risk for ∑32PCBs and OCPs in the non-heating period were 1.8- and 1.2-4.6 folds higher than in the heating period, respectively. In contrast, the 95th percentile risk levels for ∑14PAHs in the heating period were 4.3 times greater than that of non-heating period for inhalation, respectively. While risk levels associated with exposure to PCBs and OCPs did not exceed the acceptable level of 1 × 10-6, it was exceeded for 47 % of the population associated with inhalation of PAHs with a maximum value of about 4 × 10-6.
Department of Chemical Engineering İzmir Institute of Technology Gülbahçe 35430 Urla İzmir Turkey
Multiphase Chemistry Department Max Planck Institute for Chemistry 55128 Mainz Germany
Research Centre for Toxic Compounds in the Environment Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Ecotoxicol Environ Saf. 2014 Oct;108:106-13 PubMed
Int J Hyg Environ Health. 2010 Jul;213(4):233-42 PubMed
Environ Sci Technol. 2008 Oct 1;42(19):7125-31 PubMed
J Environ Monit. 2012 May;14(5):1365-74 PubMed
Environ Sci Pollut Res Int. 2014 Mar;21(5):3920-35 PubMed
Environ Sci Pollut Res Int. 2011 Mar;18(3):396-406 PubMed
Environ Sci Technol. 2012 Mar 6;46(5):2600-6 PubMed
Environ Sci Technol. 2006 Aug 15;40(16):4867-73 PubMed
Environ Pollut. 2008 Dec;156(3):784-93 PubMed
J Toxicol Environ Health A. 2006 Nov;69(21):1987-2005 PubMed
Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E586-91 PubMed
J Environ Monit. 2009 Nov;11(11):1952-63 PubMed
Environ Sci Technol. 2011 Sep 15;45(18):7617-9 PubMed
J Hazard Mater. 2007 Feb 9;140(1-2):45-51 PubMed
Sci Total Environ. 2014 Jan 1;466-467:733-40 PubMed
Water Res. 2006 Oct;40(17):3219-30 PubMed
J Environ Monit. 2012 Aug;14 (8):2219-29 PubMed
Environ Pollut. 2008 Nov;156(1):123-35 PubMed
J Environ Manage. 2012 Dec 30;113:432-9 PubMed
Sci Total Environ. 2006 Jul 31;366(1):112-23 PubMed
Environ Pollut. 2007 Nov;150(1):150-65 PubMed
Environ Sci Technol. 2009 Aug 1;43(15):5818-24 PubMed
Sci Total Environ. 2010 Jul 1;408(15):2854-73 PubMed
Environ Sci Technol. 2009 Feb 1;43(3):796-803 PubMed
Sci Total Environ. 2002 May 6;290(1-3):181-98 PubMed
Sci Total Environ. 2010 Oct 15;408(22):5550-8 PubMed
Chemosphere. 2009 Nov;77(9):1168-76 PubMed
Environ Pollut. 2013 Oct;181:159-66 PubMed
Chemosphere. 2007 Oct;69(8):1267-77 PubMed
Environ Sci Technol. 2015 Feb 17;49(4):2105-14 PubMed
Environ Sci Pollut Res Int. 2015 Aug;22(15):11301-13 PubMed
Environ Sci Technol. 2004 Oct 1;38(19):4973-8 PubMed
J Environ Monit. 2007 Jun;9(6):557-63 PubMed