Polybrominated diphenyl ethers (PBDEs) in background air around the Aegean: implications for phase partitioning and size distribution
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28993999
DOI
10.1007/s11356-017-0285-7
PII: 10.1007/s11356-017-0285-7
Knihovny.cz E-zdroje
- Klíčová slova
- Absorption/adsorption models, Aerosol mass size distribution, Gas/particle partitioning, Long-range transport,
- MeSH
- adsorpce MeSH
- halogenované difenylethery analýza MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Řecko MeSH
- Názvy látek
- halogenované difenylethery MeSH
- látky znečišťující vzduch MeSH
The occurrence and atmospheric behavior of tri- to deca-polybrominated diphenyl ethers (PBDEs) were investigated during a 2-week campaign concurrently conducted in July 2012 at four background sites around the Aegean Sea. The study focused on the gas/particle (G/P) partitioning at three sites (Ag. Paraskevi/central Greece/suburban, Finokalia/southern Greece/remote coastal, and Urla/Turkey/rural coastal) and on the size distribution at two sites (Neochorouda/northern Greece/rural inland and Finokalia/southern Greece/remote coastal). The lowest mean total (G + P) concentrations of ∑7PBDE (BDE-28, BDE-47, BDE-66, BDE-99, BDE-100, BDE-153, BDE-154) and BDE-209 (0.81 and 0.95 pg m-3, respectively) were found at the remote site Finokalia. Partitioning coefficients, K P, were calculated, and their linear relationships with ambient temperature and the physicochemical properties of the analyzed PBDE congeners, i.e., the subcooled liquid pressure (P L°) and the octanol-air partition coefficient (K OA), were investigated. The equilibrium adsorption (P L°-based) and absorption (K OA-based) models, as well as a steady-state absorption model including an equilibrium and a non-equilibrium term, both being functions of log K OA, were used to predict the fraction Φ of PBDEs associated with the particle phase. The steady-state model proved to be superior to predict G/P partitioning of BDE-209. The distribution of particle-bound PBDEs across size fractions < 0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and > 7.2 μm indicated a positive correlation between the mass median aerodynamic diameter and log P L° for the less brominated congeners, whereas a negative correlation was observed for the high brominated congeners. The potential source regions of PBDEs were acknowledged as a combination of long-range transport with short-distance sources.
Department of Environmental Engineering Dokuz Eylul University Kaynaklar Izmir Turkey
Institute of Nuclear Technology and Radiation Protection NCSR Demokritos Institute Athens Greece
Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz Germany
Research Centre for Toxic Compounds in the Environment Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Environ Sci Pollut Res Int. 2014 May;21(9):6188-204 PubMed
J Hazard Mater. 2011 Jan 30;185(2-3):784-91 PubMed
Environ Sci Pollut Res Int. 2014 Feb;21(3):1769-1785 PubMed
Pediatr Res. 2011 Dec;70(6):596-600 PubMed
Sci Total Environ. 2013 Jun 1;454-455:534-41 PubMed
Ecotoxicol Environ Saf. 2014 Oct;108:65-71 PubMed
Environ Pollut. 2012 Oct;169:217-29 PubMed
Environ Sci Technol. 2007 Jul 15;41(14):4986-92 PubMed
Int J Hyg Environ Health. 2012 Apr;215(3):345-51 PubMed
J Phys Chem A. 2012 Jul 5;116(26):7050-6 PubMed
Sci Total Environ. 2008 Jan 25;389(2-3):296-305 PubMed
Chemosphere. 2006 Jun;64(2):262-7 PubMed
Environ Sci Technol. 2013 Aug 6;47(15):8978-84 PubMed
Environ Pollut. 2016 Aug;215:113-124 PubMed
Environ Sci Technol. 2004 Aug 1;38(15):4149-56 PubMed
Environ Sci Pollut Res Int. 2016 Nov;23 (22):22500-22512 PubMed
Sci Total Environ. 2010 Jul 1;408(15):2885-918 PubMed
Environ Sci Technol. 2014 Dec 16;48(24):14426-34 PubMed
Chemosphere. 2008 Apr;71(6):1067-78 PubMed
Environ Pollut. 2013 Jun;177:116-24 PubMed
Environ Pollut. 2009 Apr;157(4):1227-33 PubMed
Environ Toxicol Chem. 2002 Sep;21(9):1804-10 PubMed
Environ Pollut. 2014 Sep;192:232-43 PubMed
Environ Sci Technol. 2009 Jul 15;43(14):5205-11 PubMed
Environ Pollut. 2012 Dec;171:234-40 PubMed
Environ Toxicol Chem. 2003 Jun;22(6):1252-61 PubMed
Environ Sci Technol. 2014 Dec 2;48(23):13793-9 PubMed
Environ Sci Technol. 2006 Feb 15;40(4):1190-6 PubMed
Chemosphere. 2007 Jan;66(10):1998-2010 PubMed
Environ Sci Technol. 2017 Jan 17;51(2):1035-1042 PubMed
Environ Sci Technol. 2006 Oct 15;40(20):6247-54 PubMed
Environ Pollut. 2012 Feb;161:154-61 PubMed
Environ Sci Technol. 2012 Jul 3;46(13):7207-14 PubMed
Faraday Discuss. 2013;165:391-406 PubMed
Environ Health Perspect. 2001 Mar;109 Suppl 1:49-68 PubMed
Environ Sci Technol. 2015 Feb 17;49(4):2105-14 PubMed
Environ Sci Pollut Res Int. 2015 Aug;22(15):11301-13 PubMed
Environ Sci Technol. 2007 Feb 1;41(3):785-91 PubMed