Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions

. 2021 ; 12 () : 674010. [epub] 20210517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34079573

Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.

Zobrazit více v PubMed

Acet T., Kadioglu A. (2020). SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in PubMed DOI PMC

Acosta-García G., Vielle-Calzada J.-P. (2004). A classical arabinogalactan protein is essential for the initiation of female gametogenesis in PubMed DOI PMC

Albert M., Belastegui-Macadam X., Kaldenhoff R. (2006). An attack of the plant parasite PubMed DOI

Andème-Onzighi C., Sivaguru M., Judy-March J., Baskin T. I., Driouich A. (2002). The reb1-1 mutation of PubMed DOI

Balestrini R., Lanfranco L. (2006). Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. PubMed DOI

Bartels D., Baumann A., Maeder M., Geske T., Heise E. M., von Schwartzenberg K., et al. (2017). Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. PubMed DOI

Basińska-Barczak A., Błaszczyk L., Szentner K. (2020). Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of PubMed DOI PMC

Baskin T. I., Betzner A. S., Hoggart R., Cork A., Williamson R. (1992). Root morphology mutants in DOI

Basu D., Liang Y., Liu X., Himmeldirk K., Faik A., Kieliszewski M., et al. (2013). Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in PubMed DOI PMC

Basu D., Tian L., Debrosse T., Poirier E., Emch K., Herock H., et al. (2016). Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in PubMed DOI PMC

Basu D., Wang W., Ma S., DeBrosse T., Poirier E., Emch K., et al. (2015). Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in arabinogalactan-protein glycosylation, growth and development in PubMed DOI PMC

Baum T., Wubben M. K., II, Su H., Rodermel S. (2000). A screen for PubMed PMC

Beneventi M. A., da Silva O. B., de Sá M. E. L., Firmino A. A. P., de Amorim R. M. S., Albuquerque ÉV. S., et al. (2013). Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. PubMed DOI PMC

Berry A. M., Rasmussen U., Bateman K., Huss-Danell K., Lindwall S., Bergman B. (2002). Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of PubMed DOI

Bonin C. P., Potter I., Vanzin G. F., Reiter W.-D. (1997). The MUR1 gene of PubMed DOI PMC

Borassi C., Gloazzo Dorosz J., Ricardi M. M., Carignani Sardoy M., Pol Fachin L., Marzol E., et al. (2020). A cell surface arabinogalactan-peptide influences root hair cell fate. PubMed DOI

Borisov A. Y., Rozov S., Tsyganov V., Morzhina E., Lebsky V., Tikhonovich I. (1997). Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea ( PubMed DOI

Bossy A., Blaschek W., Classen B. (2009). Characterization and immunolocalization of arabinogalactan-proteins in roots of PubMed DOI

Bozbuga R., Lilley C. J., Knox J. P., Urwin P. E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, PubMed DOI PMC

Bradley D. J., Kjellbom P., Lamb C. J. (1992). Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. PubMed DOI

Brewin N. J. (2004). Plant cell wall remodelling in the DOI

Brewin N., Khodorenko A., Tsyganov V., Borisov A., Tikhonovich I., Rathbun E. (2008). “Legume AGP-extensins in DOI

Burget E. G., Reiter W.-D. (1999). The mur4 mutant of PubMed DOI PMC

Burget E. G., Verma R., Mølhøj M., Reiter W.-D. (2003). The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of PubMed DOI PMC

Caffall K. H., Mohnen D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. PubMed DOI

Cannesan M. A., Durand C., Burel C., Gangneux C., Lerouge P., Ishii T., et al. (2012). Effect of arabinogalactan proteins from the root caps of pea and PubMed DOI PMC

Casero P. J., Casimiro I., Knox J. P. (1998). Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. DOI

Castilleux R., Plancot B., Gugi B., Attard A., Loutelier-Bourhis C., Lefranc B., et al. (2020). Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. PubMed DOI PMC

Cheung A. Y., Wang H., Wu H.-M. (1995). A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. PubMed DOI

Cheung A., Wu H.-M. (1999). Arabinogalactan proteins in plant sexual reproduction. DOI

Cho H.-T. (2016). Arabinogalactan protein motif-containing receptor-like kinases are likely to play the negative feedback factor to maintain proper root hair length. PubMed DOI PMC

Clarke A., Anderson R., Stone B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. DOI

Classen B., Baumann A., Utermoehlen J. (2019). Arabinogalactan-proteins in spore-producing land plants. PubMed DOI

Coba de la Pena T., Fedorova E., Pueyo J. J., Lucas M. M. (2017). The symbiosome: legume and PubMed DOI PMC

Corral-Martinez P., Driouich A., Segui-Simarro J. M. (2019). Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in PubMed DOI PMC

Cosgrove D. J. (2005). Growth of the plant cell wall. PubMed DOI

Demesa-Arevalo E., Vielle-Calzada J. P. (2013). The classical arabinogalactan protein AGP18 mediates megaspore selection in PubMed DOI PMC

Ding L., Zhu J.-K. (1997). A role for arabinogalactan-proteins in root epidermal cell expansion. PubMed DOI

Dobon A., Canet J. V., Garcia-Andrade J., Angulo C., Neumetzler L., Persson S., et al. (2015). Novel disease susceptibility factors for fungal necrotrophic pathogens in PubMed DOI PMC

Dolan L., Linstead P., Roberts K. (1995). An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the DOI

Dos Santos A. L. W., Wiethölter N., El Gueddari N. E., Moerschbacher B. M. (2006). Protein expression during seed development in DOI

Driouich A., Smith C., Ropitaux M., Chambard M., Boulogne I., Bernard S., et al. (2019). Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? PubMed DOI

Duman Z., Eliyahu A., Abu-Abied M., Sadot E. (2020). The contribution of cell wall remodeling and signaling to lateral organs formation. DOI

Elkins T., Zinn K., McAllister L., HoffMann F. M., Goodman C. S. (1990). Genetic analysis of a PubMed DOI

Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-proteins: key regulators at the cell surface? PubMed DOI PMC

Faik A., Abouzouhair J., Sarhan F. (2006). Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat ( PubMed DOI

Ferguson B. J., Mens C., Hastwell A. H., Zhang M., Su H., Jones C. H., et al. (2019). Legume nodulation: the host controls the party. PubMed DOI

Fincher G. B., Stone B. A., Clarke A. E. (1983). Arabinogalactan-proteins: structure, biosynthesis, and function. DOI

Freshour G., Bonin C. P., Reiter W.-D., Albersheim P., Darvill A. G., Hahn M. G. (2003). Distribution of fucose-containing xyloglucans in cell walls of the PubMed DOI PMC

Galloway A. F., Akhtar J., Marcus S. E., Fletcher N., Field K., Knox P. (2020). Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties. PubMed DOI

Gantulga D., Turan Y., Bevan D. R., Esen A. (2008). The PubMed DOI

Gaspar Y. M., Nam J., Schultz C. J., Lee L.-Y., Gilson P. R., Gelvin S. B., et al. (2004). Characterization of the PubMed DOI PMC

Gigli-Bisceglia N., Engelsdorf T., Hamann T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. PubMed DOI PMC

Gille S., Sharma V., Baidoo E. E., Keasling J. D., Scheller H. V., Pauly M. (2013). Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the PubMed DOI

Gollotte A., Gianinazzi-Pearson V., Gianinazzi S. (1995). Immunodetection of infection thread glycoprotein and arabinogalactan protein in wild type

Harholt J., Jensen J. K., Verhertbruggen Y., Sogaard C., Bernard S., Nafisi M., et al. (2012). ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. PubMed DOI

Hawes M. C., Gunawardena U., Miyasaka S., Zhao X. (2000). The role of root border cells in plant defense. PubMed DOI

He J., Zhao H., Cheng Z., Ke Y., Liu J., Ma H. (2019). Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. PubMed DOI PMC

Herve C., Simeon A., Jam M., Cassin A., Johnson K. L., Salmean A. A., et al. (2016). Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in PubMed DOI

Hijazi M., Roujol D., Nguyen-Kim H., Del Rocio Cisneros Castillo L., Saland E., Jamet E., et al. (2014). Arabinogalactan protein 31 (AGP31), a putative network-forming protein in PubMed DOI PMC

Hossain Z., McGarvey B., Amyot L., Gruber M., Jung J., Hannoufa A. (2012). DIMINUTO 1 affects the lignin profile and secondary cell wall formation in PubMed DOI

Hozumi A., Bera S., Fujiwara D., Obayashi T., Yokoyama R., Nishitani K., et al. (2017). Arabinogalactan proteins accumulate in the cell walls of searching hyphae of the stem parasitic plants, PubMed DOI

Huang Y., Wang Y., Tan L., Sun L., Petrosino J., Cui M.-Z., et al. (2016). Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. PubMed DOI PMC

Hwang Y., Lee H., Lee Y. S., Cho H. T. (2016). Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of PubMed DOI PMC

Immerzeel P., Eppink M. M., de Vries S. C., Schols H. A., Voragen A. G. J. (2006). Carrot arabinogalactan proteins are interlinked with pectins. DOI

Irani S., Trost B., Waldner M., Nayidu N., Tu J., Kusalik A. J., et al. (2018). Transcriptome analysis of response to PubMed DOI PMC

Ito S., Suzuki Y., Miyamoto K., Ueda J., Yamaguchi I. (2005). AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. PubMed DOI

Jackson O., Taylor O., Adams D. G., Knox J. P. (2012). Arabinogalactan proteins occur in the free-living cyanobacterium genus PubMed DOI

Jia Z., Giehl R. F. H., von Wiren N. (2020). The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. PubMed DOI PMC

Jiao Y., Sun L., Song Y., Wang L., Liu L., Zhang L., et al. (2013). AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in PubMed DOI

Jing Y., Shi L., Li X., Zheng H., He L. (2019). AGP30: Cd tolerance related gene associate with mitochondrial pyruvate carrier 1. PubMed DOI PMC

Johnson K. L., Cassin A. M., Lonsdale A., Wong G. K., Soltis D. E., Miles N. W., et al. (2017). Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. PubMed DOI PMC

Johnson K. L., Kibble N. A., Bacic A., Schultz C. J. (2011). A fasciclin-like arabinogalactan-protein (FLA) mutant of PubMed DOI PMC

Kirchner T. W., Niehaus M., Rossig K. L., Lauterbach T., Herde M., Kuster H., et al. (2018). Molecular background of Pi deficiency-induced root hair growth in PubMed DOI PMC

Kjellbom P., Snogerup L., Stöhr C., Reuzeau C., McCabe P. F., Pennell R. I. (1997). Oxidative cross-linking of plasma membrane arabinogalactan proteins. PubMed DOI

Klahre U., Noguchi T., Fujioka S., Takatsuto S., Yokota T., Nomura T., et al. (1998). The PubMed DOI PMC

Knox J. P., Day S., Roberts K. (1989). A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of

Knox P. (2016). Delving in the deep for the origin of plant cell surface proteoglycans. PubMed DOI

Koroney A. S., Plasson C., Pawlak B., Sidikou R., Driouich A., Menu-Bouaouiche L., et al. (2016). Root exudate of PubMed DOI PMC

Kreuger M., van Holst G.-J. (1993). Arabinogalactan proteins are essential in somatic embryogenesis of DOI

Lamport D. T., Varnai P. (2013). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. PubMed DOI

Lamport D. T., Kieliszewski M. J., Showalter A. M. (2006). Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. PubMed DOI

Lamport D. T., Tan L., Held M. A., Kieliszewski M. J. (2018). Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta stone. PubMed DOI

Lee K. J., Sakata Y., Mau S.-L., Pettolino F., Bacic A., Quatrano R. S., et al. (2005). Arabinogalactan proteins are required for apical cell extension in the moss PubMed DOI PMC

Leszczuk A., Cybulska J., Skrzypek T., Zdunek A. (2020a). Properties of arabinogalactan proteins (AGPs) in apple ( PubMed DOI PMC

Leszczuk A., Kalaitzis P., Blazakis K. N., Zdunek A. (2020b). The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. PubMed DOI PMC

Li J., Yu M., Geng L. L., Zhao J. (2010). The fasciclin-like arabinogalactan protein gene, PubMed DOI

Lin W. D., Liao Y. Y., Yang T. J., Pan C. Y., Buckhout T. J., Schmidt W. (2011). Coexpression-based clustering of PubMed DOI PMC

Liu D., Tu L., Li Y., Wang L., Zhu L., Zhang X. (2008). Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. DOI

Liu E., MacMillan C. P., Shafee T., Ma Y., Ratcliffe J., van de Meene A., et al. (2020). Fasciclin-like arabinogalactan-protein 16 (FLA16) is required for stem development in PubMed DOI PMC

Lopez-Hernandez F., Tryfona T., Rizza A., Yu X. L., Harris M. O. B., Webb A. A. R., et al. (2020). Calcium binding by arabinogalactan polysaccharides is important for normal plant development. PubMed DOI PMC

Ma H., Zhao J. (2010). Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice ( PubMed DOI PMC

Ma Y., Yan C., Li H., Wu W., Liu Y., Wang Y., et al. (2017). Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. PubMed DOI PMC

MacMillan C. P., Mansfield S. D., Stachurski Z. H., Evans R., Southerton S. G. (2010). Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in PubMed DOI

MacMillan C. P., Taylor L., Bi Y., Southerton S. G., Evans R., Spokevicius A. (2015). The fasciclin-like arabinogalactan protein family of PubMed DOI

Mareri L., Romi M., Cai G. (2018). Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? DOI

Marquez N., Giachero M. L., Gallou A., Debat H. J., Cranenbrouck S., Di Rienzo J. A., et al. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen PubMed DOI

Marzec M., Szarejko I., Melzer M. (2015). Arabinogalactan proteins are involved in root hair development in barley. PubMed DOI PMC

McCartney L., Steele-King C. G., Jordan E., Knox J. P. (2003). Cell wall pectic (1→4)−β−d-galactan marks the acceleration of cell elongation in the PubMed DOI

Nam J., Mysore K., Zheng C., Knue M., Matthysse A., Gelvin S. (1999). Identification of T-DNA tagged PubMed DOI

Nguema-Ona E., Andème-Onzighi C., Aboughe-Angone S., Bardor M., Ishii T., Lerouge P., et al. (2006). The PubMed DOI PMC

Nguema-Ona E., Bannigan A., Chevalier L., Baskin T., I, Driouich A. (2007). Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of PubMed DOI

Nguema-Ona E., Coimbra S., Vicré-Gibouin M., Mollet J.-C., Driouich A. (2012). Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. PubMed DOI PMC

Nguema-Ona E., Vicre-Gibouin M., Cannesan M. A., Driouich A. (2013). Arabinogalactan proteins in root-microbe interactions. PubMed DOI

Nguema-Ona E., Vicre-Gibouin M., Gotte M., Plancot B., Lerouge P., Bardor M., et al. (2014). Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. PubMed DOI PMC

Nibbering P., Petersen B. L., Motawia M. S., Jorgensen B., Ulvskov P., Niittyla T. (2020). Golgi-localized exo-beta1,3-galactosidases involved in cell expansion and root growth in PubMed DOI PMC

Nivedita, Gazara R. K., Khan S., Iqrar S., Ashrafi K., Abdin M. Z. (2020). Comparative transcriptome profiling of rice colonized with beneficial endophyte, PubMed DOI

Ogawa-Ohnishi M., Matsubayashi Y. (2015). Identification of three potent hydroxyproline O-galactosyltransferases in PubMed DOI

Olmos E., Garcia De La Garma J., Gomez-Jimenez M. C., Fernandez-Garcia N. (2017). Arabinogalactan proteins are involved in salt-adaptation and vesicle trafficking in tobacco by-2 cell cultures. PubMed DOI PMC

Palacio-Lopez K., Tinaz B., Holzinger A., Domozych D. S. (2019). Arabinogalactan proteins and the extracellular matrix of Charophytes: a sticky business. PubMed DOI PMC

Pereira A. M., Pereira L. G., Coimbra S. (2015). Arabinogalactan proteins: rising attention from plant biologists. PubMed DOI

Perez-Perez Y., Carneros E., Berenguer E., Solis M. T., Barany I., Pintos B., et al. (2018). Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of PubMed DOI PMC

Pfeifer L., Shafee T., Johnson K. L., Bacic A., Classen B. (2020). Arabinogalactan-proteins of PubMed DOI PMC

Pielach A., Leroux O., Domozych D. S., Knox J. P., Popper Z. A. (2014). Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria. PubMed DOI PMC

Plancot B., Santaella C., Jaber R., Kiefer-Meyer M. C., Follet-Gueye M. L., Leprince J., et al. (2013). Deciphering the responses of root border-like cells of PubMed DOI PMC

Přerovská T., Henke S., Bleha R., Spiwok V., Gillarová S., Yvin J. C., et al. (2021). Arabinogalactan-like glycoproteins from PubMed DOI

Rashid A. (2016). Defense responses of plant cell wall non-catalytic proteins against pathogens. DOI

Rathbun E. A., Naldrett M. J., Brewin N. J. (2002). Identification of a family of extensin-like glycoproteins in the lumen of PubMed DOI

Reguera M., Abreu I., Brewin N. J., Bonilla I., Bolanos L. (2010). Borate promotes the formation of a complex between legume AGP-extensin and Rhamnogalacturonan II and enhances production of PubMed DOI

Reiter W. D., Chapple C., Somerville C. R. (1997). Mutants of PubMed DOI

Reiter W.-D., Chapple C. C., Somerville C. R. (1993). Altered growth and cell walls in a fucose-deficient mutant of PubMed DOI

Ropitaux M., Bernard S., Schapman D., Follet-Gueye M. L., Vicre M., Boulogne I., et al. (2020). Root border cells and mucilage secretions of soybean, PubMed DOI PMC

Rui Y., Dinneny J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. PubMed DOI

Sala K., Malarz K., Barlow P. W., Kurczynska E. U. (2017). Distribution of some pectic and arabinogalactan protein epitopes during PubMed DOI PMC

Šamaj J., Braun M., Baluška F., Ensikat H.-J., Tsumuraya Y., Volkmann D. (1999). Specific localization of arabinogalactan-protein epitopes at the surface of maize root hairs. DOI

Schultz C. J., Harrison M. J. (2008). Novel plant and fungal AGP-like proteins in the PubMed DOI

Schultz C., Gilson P., Oxley D., Youl J., Bacic A. (1998). GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. DOI

Seifert G. J. (2018). Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. PubMed DOI PMC

Seifert G. J. (2020). On the potential function of type II arabinogalactan O-glycosylation in regulating the fate of plant secretory proteins. PubMed DOI PMC

Seifert G. J. (2021). The FLA4-FEI pathway: a unique and mysterious signaling module related to cell wall structure and stress signaling. PubMed DOI PMC

Seifert G. J., Blaukopf C. (2010). Irritable walls: the plant extracellular matrix and signaling. PubMed DOI PMC

Seifert G. J., Roberts K. (2007). The biology of arabinogalactan proteins. PubMed DOI

Seifert G. J., Barber C., Wells B., Dolan L., Roberts K. (2002). Galactose biosynthesis in PubMed DOI

Seifert G. J., Xue H., Acet T. (2014). The PubMed DOI PMC

Shailasree S., Kini K. R., Deepak S., Kumudini B. S., Shetty H. S. (2004). Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to DOI

Shi H., Kim Y., Guo Y., Stevenson B., Zhu J.-K. (2003). The PubMed DOI PMC

Shimizu K., Aoki K. (2019). Development of parasitic organs of a stem holoparasitic plant in genus PubMed DOI PMC

Showalter A. (2001). Arabinogalactan-proteins: structure, expression and function. PubMed DOI PMC

Showalter A. M., Basu D. (2016). Glycosylation of arabinogalactan-proteins essential for development in PubMed DOI PMC

Silva J., Ferraz R., Dupree P., Showalter A. M., Coimbra S. (2020). Three decades of advances in arabinogalactan-protein biosynthesis. PubMed DOI PMC

Silva T. F., Ferreira B. G., Dos Santos Isaias R. M., Alexandre S. S., Franca M. G. C. (2020). Immunocytochemistry and density functional theory evidence the competition of aluminum and calcium for pectin binding in PubMed DOI

Snow P. M., Bieber A. J., Goodman C. S. (1989). Fasciclin III: a novel homophilic adhesion molecule in PubMed DOI

Somssich M., Khan G. A., Persson S. (2016). Cell wall heterogeneity in root development of PubMed DOI PMC

Striberny B., Krause K. (2015). Cell wall glycoproteins at interaction sites between parasitic giant dodder ( PubMed DOI PMC

Su S., Higashiyama T. (2018). Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. PubMed DOI

Swamy M. K., Akhtar M. S., Sinniah U. R. (2016). “Root exudates and their molecular interactions with rhizospheric microbes,” in DOI

Takahashi T., Gasch A., Nishizawa N., Chua N.-H. (1995). The DIMINUTO gene of PubMed DOI

Tan L., Eberhard S., Pattathil S., Warder C., Glushka J., Yuan C., et al. (2013). An PubMed DOI PMC

Tan L., Tees D., Qian J., Kareem S., Kieliszewski M. J. (2018). Intermolecular interactions between glycomodules of plant cell wall arabinogalactan-proteins and extensins. PubMed DOI PMC

Trivedi D. K., Bhatt H., Pal R. K., Tuteja R., Garg B., Johri A. K., et al. (2013). Structure of RNA-interacting cyclophilin A-like protein from PubMed DOI PMC

Tryfona T., Theys T. E., Wagner T., Stott K., Keegstra K., Dupree P. (2014). Characterisation of FUT4 and FUT6 α-(1→2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases PubMed DOI PMC

Tsyganova A. V., Seliverstova E. V., Brewin N. J., Tsyganov V. E. (2019). Comparative analysis of remodelling of the plant-microbe interface in PubMed DOI

Tsyganova A. V., Tsyganov V. E., Findlay K. C., Borisov A. Y., Tikhonovich I. A., Brewin N. J. (2009). Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. PubMed DOI

Tucker M. R., Lou H., Aubert M. K., Wilkinson L. G., Little A., Houston K., et al. (2018). Exploring the role of cell wall-related genes and polysaccharides during plant development. PubMed DOI PMC

Turupcu A., Almohamed W., Oostenbrink C., Seifert G. J. (2018). A speculation on the tandem fasciclin 1 repeat of FLA4 proteins in angiosperms. PubMed DOI PMC

Van Hengel A. J., Roberts K. (2002). Fucosylated arabinogalactan-proteins are required for full root cell elongation in PubMed DOI

Van Hengel A. J., Roberts K. (2003). AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. PubMed DOI

Van Hengel A. J., Barber C., Roberts K. (2004). The expression patterns of arabinogalactan-protein PubMed DOI

van Hengel A. J., Tadesse Z., Immerzeel P., Schols H., Van Kammen A., de Vries S. C. (2001). N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. PubMed DOI PMC

Velasquez S. M., Marzol E., Borassi C., Pol-Fachin L., Ricardi M. M., Mangano S., et al. (2015). Low sugar is not always good: impact of specific O-glycan defects on tip growth in PubMed DOI PMC

Vicré M., Santaella C., Blanchet S., Gateau A., Driouich A. (2005). Root border-like cells of PubMed DOI PMC

Voxeur A., Hofte H. (2016). Cell wall integrity signaling in plants: “to grow or not to grow that’s the question”. PubMed DOI

Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., et al. (2005). The endophytic fungus PubMed DOI PMC

Wang H., Jiang C., Wang C., Yang Y., Yang L., Gao X., et al. (2015). Antisense expression of the fasciclin-like arabinogalactan protein PubMed DOI PMC

Wang L., Cheng M., Yang Q., Li J., Wang X., Zhou Q., et al. (2019). Arabinogalactan protein-rare earth element complexes activate plant endocytosis. PubMed DOI PMC

Wang Y., Mortimer J. C., Davis J., Dupree P., Keegstra K. (2013). Identification of an additional protein involved in mannan biosynthesis. PubMed DOI PMC

Willats W. G., Knox J. P. (1996). A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β−glucosyl Yariv reagent with seedlings of PubMed DOI

Wu Y., Fan W., Li X., Chen H., Takac T., Samajova O., et al. (2017). Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and PubMed DOI PMC

Wubben M. J., II, Rodermel S. R., Baum T. J. (2004). Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in PubMed DOI

Xie D., Ma L., Samaj J., Xu C. (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to PubMed DOI

Xu S. L., Rahman A., Baskin T. I., Kieber J. J. (2008). Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in PubMed DOI PMC

Xue H., Seifert G. J. (2015). Fasciclin like arabinogalactan protein 4 and respiratory burst oxidase homolog D and F independently modulate abscisic acid signaling. PubMed DOI PMC

Xue H., Veit C., Abas L., Tryfona T., Maresch D., Ricardi M. M., et al. (2017). PubMed DOI PMC

Yang J., Showalter A. M. (2007). Expression and localization of AtAGP18, a lysine-rich arabinogalactan-protein in PubMed DOI

Yang J., Sardar H. S., McGovern K. R., Zhang Y., Showalter A. M. (2007). A lysine-rich arabinogalactan protein in PubMed DOI

Yang J., Zhang Y., Liang Y., Showalter A. M. (2011). Expression analyses of AtAGP17 and AtAGP19, two lysine-rich arabinogalactan proteins, in PubMed DOI

Yariv J., Lis H., Katchalski E. (1967). Precipitation of Arabic acid and some seed polysaccharides by glycosylphenylazo dyes. PubMed DOI PMC

Yeats T. H., Bacic A., Johnson K. L. (2018). Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. PubMed DOI

Yu M., Zhao J. (2012). The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. PubMed DOI PMC

Zagorchev L., Kamenova P., Odjakova M. (2014). The role of plant cell wall proteins in response to salt stress. PubMed DOI PMC

Zang L., Zheng T., Chu Y., Ding C., Zhang W., Huang Q., et al. (2015). Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in PubMed DOI PMC

Zhang Y., Held M. A., Showalter A. M. (2020). Elucidating the roles of three beta-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in PubMed DOI PMC

Zhang Y., Held M. A., Kaur D., Showalter A. M. (2021). CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in PubMed DOI PMC

Zhang Y., Yang J., Showalter A. M. (2011). AtAGP18 is localized at the plasma membrane and functions in plant growth and development. PubMed DOI

Zhao C., Zayed O., Zeng F., Liu C., Zhang L., Zhu P., et al. (2019). Arabinose biosynthesis is critical for salt stress tolerance in PubMed DOI

Zhou K. (2019). Glycosylphosphatidylinositol-anchored proteins in PubMed DOI PMC

Zhu J. K., Shi J., Singh U., Wyatt S. E., Bressan R. A., Hasegawa P. M., et al. (1993). Enrichment of vitronectin-and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane–cell wall adhesion. PubMed DOI

Zielinski K., Dubas E., Gersi Z., Krzewska M., Janas A., Nowicka A., et al. (2021). Beta-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye ( PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...