Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34079573
PubMed Central
PMC8165308
DOI
10.3389/fpls.2021.674010
Knihovny.cz E-zdroje
- Klíčová slova
- AGP, GPI anchor, arabinogalactan proteins, fasciclin-like, interactions, root growth, root hairs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Zobrazit více v PubMed
Acet T., Kadioglu A. (2020). SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in Arabidopsis thaliana under salt stress. Physiol. Mol. Biol. Plants 26 1831–1845. 10.1007/s12298-020-00873-4 PubMed DOI PMC
Acosta-García G., Vielle-Calzada J.-P. (2004). A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16 2614–2628. 10.1105/tpc.104.024588 PubMed DOI PMC
Albert M., Belastegui-Macadam X., Kaldenhoff R. (2006). An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. Plant J. 48 548–556. 10.1111/j.1365-313X.2006.02897.x PubMed DOI
Andème-Onzighi C., Sivaguru M., Judy-March J., Baskin T. I., Driouich A. (2002). The reb1-1 mutation of Arabidopsis alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical microtubules. Planta 215 949–958. 10.1007/s00425-002-0836-z PubMed DOI
Balestrini R., Lanfranco L. (2006). Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16 509–524. 10.1007/s00572-006-0069-2 PubMed DOI
Bartels D., Baumann A., Maeder M., Geske T., Heise E. M., von Schwartzenberg K., et al. (2017). Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. Carbohydr. Polym. 163 227–235. 10.1016/j.carbpol.2017.01.043 PubMed DOI
Basińska-Barczak A., Błaszczyk L., Szentner K. (2020). Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of Trichoderma. Cells 9:2319. 10.3390/cells9102319 PubMed DOI PMC
Baskin T. I., Betzner A. S., Hoggart R., Cork A., Williamson R. (1992). Root morphology mutants in Arabidopsis thaliana. Funct. Plant Biol. 19 427–437. 10.1071/PP9920427 DOI
Basu D., Liang Y., Liu X., Himmeldirk K., Faik A., Kieliszewski M., et al. (2013). Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J. Biol. Chem. 288 10132–10143. 10.1074/jbc.M112.432609 PubMed DOI PMC
Basu D., Tian L., Debrosse T., Poirier E., Emch K., Herock H., et al. (2016). Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS One 11:e0145092. 10.1371/journal.pone.0145092 PubMed DOI PMC
Basu D., Wang W., Ma S., DeBrosse T., Poirier E., Emch K., et al. (2015). Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. PLoS One 10:e0125624. 10.1371/journal.pone.0125624 PubMed DOI PMC
Baum T., Wubben M. K., II, Su H., Rodermel S. (2000). A screen for Arabidopsis thaliana mutants with altered susceptibility to Heterodera schachtii. J. Nematol. 32:166. PubMed PMC
Beneventi M. A., da Silva O. B., de Sá M. E. L., Firmino A. A. P., de Amorim R. M. S., Albuquerque ÉV. S., et al. (2013). Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics 14:322. 10.1186/1471-2164-14-322 PubMed DOI PMC
Berry A. M., Rasmussen U., Bateman K., Huss-Danell K., Lindwall S., Bergman B. (2002). Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of Alnus spp. New Phytol. 155 469–479. 10.1046/j.1469-8137.2002.00466.x PubMed DOI
Bonin C. P., Potter I., Vanzin G. F., Reiter W.-D. (1997). The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. 94 2085–2090. 10.1073/pnas.94.5.2085 PubMed DOI PMC
Borassi C., Gloazzo Dorosz J., Ricardi M. M., Carignani Sardoy M., Pol Fachin L., Marzol E., et al. (2020). A cell surface arabinogalactan-peptide influences root hair cell fate. New Phytol. 227 732–743. 10.1111/nph.16487 PubMed DOI
Borisov A. Y., Rozov S., Tsyganov V., Morzhina E., Lebsky V., Tikhonovich I. (1997). Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.). Mol. Gen. Genet. 254 592–598. 10.1007/s004380050456 PubMed DOI
Bossy A., Blaschek W., Classen B. (2009). Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea. Planta Med. 75 1526–1533. 10.1055/s-0029-1185801 PubMed DOI
Bozbuga R., Lilley C. J., Knox J. P., Urwin P. E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Sci. Rep. 8:17302. 10.1038/s41598-018-35529-7 PubMed DOI PMC
Bradley D. J., Kjellbom P., Lamb C. J. (1992). Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70 21–30. 10.1016/0092-8674(92)90530-P PubMed DOI
Brewin N. J. (2004). Plant cell wall remodelling in the Rhizobium–legume symbiosis. Crit. Rev. Plant Sci. 23 293–316. 10.1080/07352680490480734 DOI
Brewin N., Khodorenko A., Tsyganov V., Borisov A., Tikhonovich I., Rathbun E. (2008). “Legume AGP-extensins in Rhizobium infection,” in Biological Nitrogen Fixation: Towards Poverty Alleviation Through Sustainable Agriculture, eds Dakora F., Chimphango S., Valentine A., Elmerich C., WE N. (Dordrecht: Springer; ), 185–187. 10.1007/978-1-4020-8252-8_70 DOI
Burget E. G., Reiter W.-D. (1999). The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphosphol-arabinose. Plant Physiol. 121 383–390. 10.1104/pp.121.2.383 PubMed DOI PMC
Burget E. G., Verma R., Mølhøj M., Reiter W.-D. (2003). The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15 523–531. 10.1105/tpc.008425 PubMed DOI PMC
Caffall K. H., Mohnen D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344 1879–1900. 10.1016/j.carres.2009.05.021 PubMed DOI
Cannesan M. A., Durand C., Burel C., Gangneux C., Lerouge P., Ishii T., et al. (2012). Effect of arabinogalactan proteins from the root caps of pea and Brassica napus on Aphanomyces euteiches zoospore chemotaxis and germination. Plant Physiol. 159 1658–1670. 10.1104/pp.112.198507 PubMed DOI PMC
Casero P. J., Casimiro I., Knox J. P. (1998). Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204 252–259. 10.1007/s004250050254 DOI
Castilleux R., Plancot B., Gugi B., Attard A., Loutelier-Bourhis C., Lefranc B., et al. (2020). Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. Ann. Bot. 125 751–763. 10.1093/aob/mcz068 PubMed DOI PMC
Cheung A. Y., Wang H., Wu H.-M. (1995). A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82 383–393. 10.1016/0092-8674(95)90427-1 PubMed DOI
Cheung A., Wu H.-M. (1999). Arabinogalactan proteins in plant sexual reproduction. Protoplasma 208 87–98. 10.1007/BF01279078 DOI
Cho H.-T. (2016). Arabinogalactan protein motif-containing receptor-like kinases are likely to play the negative feedback factor to maintain proper root hair length. Plant Signal. Behav. 11 2007–2022. 10.1080/15592324.2016.1226454 PubMed DOI PMC
Clarke A., Anderson R., Stone B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry 18 521–540. 10.1016/S0031-9422(00)84255-7 DOI
Classen B., Baumann A., Utermoehlen J. (2019). Arabinogalactan-proteins in spore-producing land plants. Carbohydr. Polym. 210 215–224. 10.1016/j.carbpol.2019.01.077 PubMed DOI
Coba de la Pena T., Fedorova E., Pueyo J. J., Lucas M. M. (2017). The symbiosome: legume and Rhizobia co-evolution toward a nitrogen-fixing organelle? Front. Plant Sci. 8:2229. 10.3389/fpls.2017.02229 PubMed DOI PMC
Corral-Martinez P., Driouich A., Segui-Simarro J. M. (2019). Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in Brassica napus. Front. Plant Sci. 10:332. 10.3389/fpls.2019.00332 PubMed DOI PMC
Cosgrove D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6 850–861. 10.1038/nrm1746 PubMed DOI
Demesa-Arevalo E., Vielle-Calzada J. P. (2013). The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. Plant Cell 25 1274–1287. 10.1105/tpc.112.106237 PubMed DOI PMC
Ding L., Zhu J.-K. (1997). A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203 289–294. 10.1007/s004250050194 PubMed DOI
Dobon A., Canet J. V., Garcia-Andrade J., Angulo C., Neumetzler L., Persson S., et al. (2015). Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog. 11:e1004800. 10.1371/journal.ppat.1004800 PubMed DOI PMC
Dolan L., Linstead P., Roberts K. (1995). An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the Arabidopsis root. Protoplasma 189 149–155. 10.1007/bf01280168 DOI
Dos Santos A. L. W., Wiethölter N., El Gueddari N. E., Moerschbacher B. M. (2006). Protein expression during seed development in Araucaria angustifolia: transient accumulation of class IV chitinases and arabinogalactan proteins. Physiol. Plant. 127 138–148. 10.1111/j.1399-3054.2005.00637.x DOI
Driouich A., Smith C., Ropitaux M., Chambard M., Boulogne I., Bernard S., et al. (2019). Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol. Rev. Camb. Philos. Soc. 94 1685–1700. 10.1111/brv.12522 PubMed DOI
Duman Z., Eliyahu A., Abu-Abied M., Sadot E. (2020). The contribution of cell wall remodeling and signaling to lateral organs formation. Isr. J. Plant Sci. 67 110–127. 10.1163/22238980-20191115 DOI
Elkins T., Zinn K., McAllister L., HoffMann F. M., Goodman C. S. (1990). Genetic analysis of a Drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell 60 565–575. 10.1016/0092-8674(90)90660-7 PubMed DOI
Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153 403–419. 10.1104/pp.110.156000 PubMed DOI PMC
Faik A., Abouzouhair J., Sarhan F. (2006). Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Mol. Genet. Genomics 276 478–494. 10.1007/s00438-006-0159-z PubMed DOI
Ferguson B. J., Mens C., Hastwell A. H., Zhang M., Su H., Jones C. H., et al. (2019). Legume nodulation: the host controls the party. Plant Cell Environ. 42 41–51. 10.1111/pce.13348 PubMed DOI
Fincher G. B., Stone B. A., Clarke A. E. (1983). Arabinogalactan-proteins: structure, biosynthesis, and function. Annu. Rev. Plant Physiol. 34 47–70. 10.1146/annurev.pp.34.060183.000403 DOI
Freshour G., Bonin C. P., Reiter W.-D., Albersheim P., Darvill A. G., Hahn M. G. (2003). Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol. 131 1602–1612. 10.1104/pp.102.016444 PubMed DOI PMC
Galloway A. F., Akhtar J., Marcus S. E., Fletcher N., Field K., Knox P. (2020). Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties. Plant J. 103 1666–1678. 10.1111/tpj.14852 PubMed DOI
Gantulga D., Turan Y., Bevan D. R., Esen A. (2008). The Arabidopsis At1g45130 and At3g52840 genes encode beta-galactosidases with activity toward cell wall polysaccharides. Phytochemistry 69 1661–1670. 10.1016/j.phytochem.2008.01.023 PubMed DOI
Gaspar Y. M., Nam J., Schultz C. J., Lee L.-Y., Gilson P. R., Gelvin S. B., et al. (2004). Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol. 135 2162–2171. 10.1104/pp.104.045542 PubMed DOI PMC
Gigli-Bisceglia N., Engelsdorf T., Hamann T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell. Mol. Life Sci. 77 2049–2077. 10.1007/s00018-019-03388-8 PubMed DOI PMC
Gille S., Sharma V., Baidoo E. E., Keasling J. D., Scheller H. V., Pauly M. (2013). Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the Arabidopsis glycosyltransferase mutant ray1. Mol. Plant 6 1369–1372. 10.1093/mp/sst029 PubMed DOI
Gollotte A., Gianinazzi-Pearson V., Gianinazzi S. (1995). Immunodetection of infection thread glycoprotein and arabinogalactan protein in wild type Pisum sativum (L.) or an isogenic mycorrhiza-resistant mutant interacting with Glomus mosseae. Symbiosis 18 69–85.
Harholt J., Jensen J. K., Verhertbruggen Y., Sogaard C., Bernard S., Nafisi M., et al. (2012). ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta 236 115–128. 10.1007/s00425-012-1592-3 PubMed DOI
Hawes M. C., Gunawardena U., Miyasaka S., Zhao X. (2000). The role of root border cells in plant defense. Trends Plant Sci. 5 128–133. 10.1016/S1360-1385(00)01556-9 PubMed DOI
He J., Zhao H., Cheng Z., Ke Y., Liu J., Ma H. (2019). Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. Int. J. Mol. Sci. 20:1945. 10.3390/ijms20081945 PubMed DOI PMC
Herve C., Simeon A., Jam M., Cassin A., Johnson K. L., Salmean A. A., et al. (2016). Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. New Phytol. 209 1428–1441. 10.1111/nph.13786 PubMed DOI
Hijazi M., Roujol D., Nguyen-Kim H., Del Rocio Cisneros Castillo L., Saland E., Jamet E., et al. (2014). Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? Ann. Bot. 114 1087–1097. 10.1093/aob/mcu038 PubMed DOI PMC
Hossain Z., McGarvey B., Amyot L., Gruber M., Jung J., Hannoufa A. (2012). DIMINUTO 1 affects the lignin profile and secondary cell wall formation in Arabidopsis. Planta 235 485–498. 10.1007/s00425-011-1519-4 PubMed DOI
Hozumi A., Bera S., Fujiwara D., Obayashi T., Yokoyama R., Nishitani K., et al. (2017). Arabinogalactan proteins accumulate in the cell walls of searching hyphae of the stem parasitic plants, Cuscuta campestris and Cuscuta japonica. Plant Cell Physiol. 58 1868–1877. 10.1093/pcp/pcx121 PubMed DOI
Huang Y., Wang Y., Tan L., Sun L., Petrosino J., Cui M.-Z., et al. (2016). Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. Proc. Natl. Acad. Sci. U.S.A. 113 E3193–E3202. 10.1073/pnas.1600406113 PubMed DOI PMC
Hwang Y., Lee H., Lee Y. S., Cho H. T. (2016). Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth. J. Exp. Bot. 67 2007–2022. 10.1093/jxb/erw031 PubMed DOI PMC
Immerzeel P., Eppink M. M., de Vries S. C., Schols H. A., Voragen A. G. J. (2006). Carrot arabinogalactan proteins are interlinked with pectins. Physiol. Plant. 128 18–28. 10.1111/j.1399-3054.2006.00712.x DOI
Irani S., Trost B., Waldner M., Nayidu N., Tu J., Kusalik A. J., et al. (2018). Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics 19:23. 10.1186/s12864-017-4426-7 PubMed DOI PMC
Ito S., Suzuki Y., Miyamoto K., Ueda J., Yamaguchi I. (2005). AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. Biosci. Biotech. Biochem. 69 1963–1969. 10.1271/bbb.69.1963 PubMed DOI
Jackson O., Taylor O., Adams D. G., Knox J. P. (2012). Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant–Nostoc symbioses. Mol. Plant Microbe Interact. 25 1338–1349. 10.1094/MPMI-04-12-0095-R PubMed DOI
Jia Z., Giehl R. F. H., von Wiren N. (2020). The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. Plant Physiol. 183 998–1010. 10.1104/pp.20.00440 PubMed DOI PMC
Jiao Y., Sun L., Song Y., Wang L., Liu L., Zhang L., et al. (2013). AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J. Exp. Bot. 64 4183–4192. 10.1093/jxb/ert228 PubMed DOI
Jing Y., Shi L., Li X., Zheng H., He L. (2019). AGP30: Cd tolerance related gene associate with mitochondrial pyruvate carrier 1. Plant Signal. Behav. 14:1629269. 10.1080/15592324.2019.1629269 PubMed DOI PMC
Johnson K. L., Cassin A. M., Lonsdale A., Wong G. K., Soltis D. E., Miles N. W., et al. (2017). Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiol. 174 904–921. 10.1104/pp.17.00295 PubMed DOI PMC
Johnson K. L., Kibble N. A., Bacic A., Schultz C. J. (2011). A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS One 6:e25154. 10.1371/journal.pone.0025154 PubMed DOI PMC
Kirchner T. W., Niehaus M., Rossig K. L., Lauterbach T., Herde M., Kuster H., et al. (2018). Molecular background of Pi deficiency-induced root hair growth in Brassica carinata – a fasciclin-like arabinogalactan protein is involved. Front. Plant Sci. 9:1372. 10.3389/fpls.2018.01372 PubMed DOI PMC
Kjellbom P., Snogerup L., Stöhr C., Reuzeau C., McCabe P. F., Pennell R. I. (1997). Oxidative cross-linking of plasma membrane arabinogalactan proteins. Plant J. 12 1189–1196. 10.1046/j.1365-313X.1997.12051189.x PubMed DOI
Klahre U., Noguchi T., Fujioka S., Takatsuto S., Yokota T., Nomura T., et al. (1998). The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10 1677–1690. 10.1105/tpc.10.10.1677 PubMed DOI PMC
Knox J. P., Day S., Roberts K. (1989). A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 106 47–56.
Knox P. (2016). Delving in the deep for the origin of plant cell surface proteoglycans. New Phytol. 209 1341–1343. 10.1111/nph.13862 PubMed DOI
Koroney A. S., Plasson C., Pawlak B., Sidikou R., Driouich A., Menu-Bouaouiche L., et al. (2016). Root exudate of Solanum tuberosum is enriched in galactose-containing molecules and impacts the growth of Pectobacterium atrosepticum. Ann. Bot. 118 797–808. 10.1093/aob/mcw128 PubMed DOI PMC
Kreuger M., van Holst G.-J. (1993). Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189 243–248. 10.1007/BF00195083 DOI
Lamport D. T., Varnai P. (2013). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytol. 197 58–64. 10.1111/nph.12005 PubMed DOI
Lamport D. T., Kieliszewski M. J., Showalter A. M. (2006). Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol. 169 479–492. 10.1111/j.1469-8137.2005.01591.x PubMed DOI
Lamport D. T., Tan L., Held M. A., Kieliszewski M. J. (2018). Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta stone. New Phytol. 217 491–500. 10.1111/nph.14845 PubMed DOI
Lee K. J., Sakata Y., Mau S.-L., Pettolino F., Bacic A., Quatrano R. S., et al. (2005). Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17 3051–3065. 10.1105/tpc.105.034413 PubMed DOI PMC
Leszczuk A., Cybulska J., Skrzypek T., Zdunek A. (2020a). Properties of arabinogalactan proteins (AGPs) in apple (Malus x Domestica) fruit at different stages of ripening. Biology 9:225. 10.3390/biology9080225 PubMed DOI PMC
Leszczuk A., Kalaitzis P., Blazakis K. N., Zdunek A. (2020b). The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. Hortic. Res. 7:176. 10.1038/s41438-020-00397-8 PubMed DOI PMC
Li J., Yu M., Geng L. L., Zhao J. (2010). The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J. 64 482–497. 10.1111/j.1365-313X.2010.04344.x PubMed DOI
Lin W. D., Liao Y. Y., Yang T. J., Pan C. Y., Buckhout T. J., Schmidt W. (2011). Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol. 155 1383–1402. 10.1104/pp.110.166520 PubMed DOI PMC
Liu D., Tu L., Li Y., Wang L., Zhu L., Zhang X. (2008). Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Mol. Biol. Rep. 26 98–113. 10.1007/s11105-008-0026-7 DOI
Liu E., MacMillan C. P., Shafee T., Ma Y., Ratcliffe J., van de Meene A., et al. (2020). Fasciclin-like arabinogalactan-protein 16 (FLA16) is required for stem development in Arabidopsis. Front. Plant Sci. 11:615392. 10.3389/fpls.2020.615392 PubMed DOI PMC
Lopez-Hernandez F., Tryfona T., Rizza A., Yu X. L., Harris M. O. B., Webb A. A. R., et al. (2020). Calcium binding by arabinogalactan polysaccharides is important for normal plant development. Plant Cell 32 3346–3369. 10.1105/tpc.20.00027 PubMed DOI PMC
Ma H., Zhao J. (2010). Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J. Exp. Bot. 61 2647–2668. 10.1093/jxb/erq104 PubMed DOI PMC
Ma Y., Yan C., Li H., Wu W., Liu Y., Wang Y., et al. (2017). Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front. Plant Sci. 8:66. 10.3389/fpls.2017.00066 PubMed DOI PMC
MacMillan C. P., Mansfield S. D., Stachurski Z. H., Evans R., Southerton S. G. (2010). Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 62 689–703. 10.1111/j.1365-313X.2010.04181.x PubMed DOI
MacMillan C. P., Taylor L., Bi Y., Southerton S. G., Evans R., Spokevicius A. (2015). The fasciclin-like arabinogalactan protein family of Eucalyptus grandis contains members that impact wood biology and biomechanics. New Phytol. 206 1314–1327. 10.1111/nph.13320 PubMed DOI
Mareri L., Romi M., Cai G. (2018). Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosyst. 153 173–185. 10.1080/11263504.2018.1473525 DOI
Marquez N., Giachero M. L., Gallou A., Debat H. J., Cranenbrouck S., Di Rienzo J. A., et al. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Mol. Plant Microbe Interact. 31 842–855. 10.1094/MPMI-11-17-0282-R PubMed DOI
Marzec M., Szarejko I., Melzer M. (2015). Arabinogalactan proteins are involved in root hair development in barley. J. Exp. Bot. 66 1245–1257. 10.1093/jxb/eru475 PubMed DOI PMC
McCartney L., Steele-King C. G., Jordan E., Knox J. P. (2003). Cell wall pectic (1→4)−β−d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J. 33 447–454. 10.1046/j.1365-313X.2003.01640.x PubMed DOI
Nam J., Mysore K., Zheng C., Knue M., Matthysse A., Gelvin S. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Genet. 261 429–438. 10.1007/s004380050985 PubMed DOI
Nguema-Ona E., Andème-Onzighi C., Aboughe-Angone S., Bardor M., Ishii T., Lerouge P., et al. (2006). The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides. Plant Physiol. 140 1406–1417. 10.1104/pp.105.074997 PubMed DOI PMC
Nguema-Ona E., Bannigan A., Chevalier L., Baskin T., I, Driouich A. (2007). Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. Plant J. 52 240–251. 10.1111/j.1365-313X.2007.03224.x PubMed DOI
Nguema-Ona E., Coimbra S., Vicré-Gibouin M., Mollet J.-C., Driouich A. (2012). Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann. Bot. 110 383–404. 10.1093/aob/mcs143 PubMed DOI PMC
Nguema-Ona E., Vicre-Gibouin M., Cannesan M. A., Driouich A. (2013). Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci. 18 440–449. 10.1016/j.tplants.2013.03.006 PubMed DOI
Nguema-Ona E., Vicre-Gibouin M., Gotte M., Plancot B., Lerouge P., Bardor M., et al. (2014). Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Front. Plant Sci. 5:499. 10.3389/fpls.2014.00499 PubMed DOI PMC
Nibbering P., Petersen B. L., Motawia M. S., Jorgensen B., Ulvskov P., Niittyla T. (2020). Golgi-localized exo-beta1,3-galactosidases involved in cell expansion and root growth in Arabidopsis. J. Biol. Chem. 295 10581–10592. 10.1074/jbc.RA120.013878 PubMed DOI PMC
Nivedita, Gazara R. K., Khan S., Iqrar S., Ashrafi K., Abdin M. Z. (2020). Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol. Biol. Rep. 47 7655–7673. 10.1007/s11033-020-05839-z PubMed DOI
Ogawa-Ohnishi M., Matsubayashi Y. (2015). Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis. Plant J. 81 736–746. 10.1111/tpj.12764 PubMed DOI
Olmos E., Garcia De La Garma J., Gomez-Jimenez M. C., Fernandez-Garcia N. (2017). Arabinogalactan proteins are involved in salt-adaptation and vesicle trafficking in tobacco by-2 cell cultures. Front. Plant Sci. 8:1092. 10.3389/fpls.2017.01092 PubMed DOI PMC
Palacio-Lopez K., Tinaz B., Holzinger A., Domozych D. S. (2019). Arabinogalactan proteins and the extracellular matrix of Charophytes: a sticky business. Front. Plant Sci. 10:447. 10.3389/fpls.2019.00447 PubMed DOI PMC
Pereira A. M., Pereira L. G., Coimbra S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reprod. 28 1–15. 10.1007/s00497-015-0254-6 PubMed DOI
Perez-Perez Y., Carneros E., Berenguer E., Solis M. T., Barany I., Pintos B., et al. (2018). Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Front. Plant Sci. 9:1915. 10.3389/fpls.2018.01915 PubMed DOI PMC
Pfeifer L., Shafee T., Johnson K. L., Bacic A., Classen B. (2020). Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci. Rep. 10:8232. 10.1038/s41598-020-65135-5 PubMed DOI PMC
Pielach A., Leroux O., Domozych D. S., Knox J. P., Popper Z. A. (2014). Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria. Ann. Bot. 114 1359–1373. 10.1093/aob/mcu121 PubMed DOI PMC
Plancot B., Santaella C., Jaber R., Kiefer-Meyer M. C., Follet-Gueye M. L., Leprince J., et al. (2013). Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. Plant Physiol. 163 1584–1597. 10.1104/pp.113.222356 PubMed DOI PMC
Přerovská T., Henke S., Bleha R., Spiwok V., Gillarová S., Yvin J. C., et al. (2021). Arabinogalactan-like glycoproteins from Ulva lactuca (Chlorophyta) show unique features compared to land plants AGPs. J. Phycol. 57 619–635. 10.1111/jpy.13121 PubMed DOI
Rashid A. (2016). Defense responses of plant cell wall non-catalytic proteins against pathogens. Physiol. Mol. Plant Pathol. 94 38–46. 10.1016/j.pmpp.2016.03.009 DOI
Rathbun E. A., Naldrett M. J., Brewin N. J. (2002). Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules. Mol. Plant Microbe Interact. 15 350–359. 10.1094/MPMI.2002.15.4.350 PubMed DOI
Reguera M., Abreu I., Brewin N. J., Bonilla I., Bolanos L. (2010). Borate promotes the formation of a complex between legume AGP-extensin and Rhamnogalacturonan II and enhances production of Rhizobium capsular polysaccharide during infection thread development in Pisum sativum symbiotic root nodules. Plant Cell Environ. 33 2112–2120. 10.1111/j.1365-3040.2010.02209.x PubMed DOI
Reiter W. D., Chapple C., Somerville C. R. (1997). Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12 335–345. 10.1046/j.1365-313X.1997.12020335.x PubMed DOI
Reiter W.-D., Chapple C. C., Somerville C. R. (1993). Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261 1032–1035. 10.1126/science.261.5124.1032 PubMed DOI
Ropitaux M., Bernard S., Schapman D., Follet-Gueye M. L., Vicre M., Boulogne I., et al. (2020). Root border cells and mucilage secretions of soybean, Glycine max (Merr) L.: Characterization and role in interactions with the oomycete Phytophthora parasitica. Cells 9:2215. 10.3390/cells9102215 PubMed DOI PMC
Rui Y., Dinneny J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol. 225 1428–1439. 10.1111/nph.16166 PubMed DOI
Sala K., Malarz K., Barlow P. W., Kurczynska E. U. (2017). Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development. BMC Plant Biol. 17:25. 10.1186/s12870-016-0949-3 PubMed DOI PMC
Šamaj J., Braun M., Baluška F., Ensikat H.-J., Tsumuraya Y., Volkmann D. (1999). Specific localization of arabinogalactan-protein epitopes at the surface of maize root hairs. Plant Cell Physiol. 40 874–883. 10.1093/oxfordjournals.pcp.a029617 DOI
Schultz C. J., Harrison M. J. (2008). Novel plant and fungal AGP-like proteins in the Medicago truncatula-Glomus intraradices arbuscular mycorrhizal symbiosis. Mycorrhiza 18 403–412. 10.1007/s00572-008-0194-1 PubMed DOI
Schultz C., Gilson P., Oxley D., Youl J., Bacic A. (1998). GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. Trends Plant Sci. 3 426–431. 10.1016/S1360-1385(98)01328-4 DOI
Seifert G. J. (2018). Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int. J. Mol. Sci. 19:1628. 10.3390/ijms19061628 PubMed DOI PMC
Seifert G. J. (2020). On the potential function of type II arabinogalactan O-glycosylation in regulating the fate of plant secretory proteins. Front. Plant Sci. 11:563735. 10.3389/fpls.2020.563735 PubMed DOI PMC
Seifert G. J. (2021). The FLA4-FEI pathway: a unique and mysterious signaling module related to cell wall structure and stress signaling. Genes 12:145. 10.3390/genes12020145 PubMed DOI PMC
Seifert G. J., Blaukopf C. (2010). Irritable walls: the plant extracellular matrix and signaling. Plant Physiol. 153 467–478. 10.1104/pp.110.153940 PubMed DOI PMC
Seifert G. J., Roberts K. (2007). The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 58 137–161. 10.1146/annurev.arplant.58.032806.103801 PubMed DOI
Seifert G. J., Barber C., Wells B., Dolan L., Roberts K. (2002). Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12 1840–1845. 10.1016/S0960-9822(02)01260-5 PubMed DOI
Seifert G. J., Xue H., Acet T. (2014). The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann. Bot. 114 1125–1133. 10.1093/aob/mcu010 PubMed DOI PMC
Shailasree S., Kini K. R., Deepak S., Kumudini B. S., Shetty H. S. (2004). Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to Sclerospora graminicola infection. Plant Sci. 167 1227–1234. 10.1016/j.plantsci.2004.06.012 DOI
Shi H., Kim Y., Guo Y., Stevenson B., Zhu J.-K. (2003). The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15 19–32. 10.1105/tpc.007872 PubMed DOI PMC
Shimizu K., Aoki K. (2019). Development of parasitic organs of a stem holoparasitic plant in genus Cuscuta. Front. Plant Sci. 10:1435. 10.3389/fpls.2019.01435 PubMed DOI PMC
Showalter A. (2001). Arabinogalactan-proteins: structure, expression and function. Cell. Mol. Life Sci. 58 1399–1417. 10.1007/PL00000784 PubMed DOI PMC
Showalter A. M., Basu D. (2016). Glycosylation of arabinogalactan-proteins essential for development in Arabidopsis. Commun. Integr. Biol. 9:e0125624. 10.1080/19420889.2016.1177687 PubMed DOI PMC
Silva J., Ferraz R., Dupree P., Showalter A. M., Coimbra S. (2020). Three decades of advances in arabinogalactan-protein biosynthesis. Front. Plant Sci. 11:610377. 10.3389/fpls.2020.610377 PubMed DOI PMC
Silva T. F., Ferreira B. G., Dos Santos Isaias R. M., Alexandre S. S., Franca M. G. C. (2020). Immunocytochemistry and density functional theory evidence the competition of aluminum and calcium for pectin binding in Urochloa decumbens roots. Plant Physiol. Biochem. 153 64–71. 10.1016/j.plaphy.2020.05.015 PubMed DOI
Snow P. M., Bieber A. J., Goodman C. S. (1989). Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell 59 313–323. 10.1016/0092-8674(89)90293-6 PubMed DOI
Somssich M., Khan G. A., Persson S. (2016). Cell wall heterogeneity in root development of Arabidopsis. Front. Plant Sci. 7:1242. 10.3389/fpls.2016.01242 PubMed DOI PMC
Striberny B., Krause K. (2015). Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale. Plant Signal. Behav. 10:e1086858. 10.1080/15592324.2015.1086858 PubMed DOI PMC
Su S., Higashiyama T. (2018). Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod. 31 67–75. 10.1007/s00497-018-0329-2 PubMed DOI
Swamy M. K., Akhtar M. S., Sinniah U. R. (2016). “Root exudates and their molecular interactions with rhizospheric microbes,” in Plant, Soil and Microbes, eds Hakeem K. R., Akhtar M. S. (Cham: Springer; ), 59–77. 10.1007/978-3-319-29573-2_4 DOI
Takahashi T., Gasch A., Nishizawa N., Chua N.-H. (1995). The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 9 97–107. 10.1101/gad.9.1.97 PubMed DOI
Tan L., Eberhard S., Pattathil S., Warder C., Glushka J., Yuan C., et al. (2013). An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25 270–287. 10.1105/tpc.112.107334 PubMed DOI PMC
Tan L., Tees D., Qian J., Kareem S., Kieliszewski M. J. (2018). Intermolecular interactions between glycomodules of plant cell wall arabinogalactan-proteins and extensins. Cell Surf. 1 25–33. 10.1016/j.tcsw.2018.03.001 PubMed DOI PMC
Trivedi D. K., Bhatt H., Pal R. K., Tuteja R., Garg B., Johri A. K., et al. (2013). Structure of RNA-interacting cyclophilin A-like protein from Piriformospora indica that provides salinity-stress tolerance in plants. Sci. Rep. 3:3001. 10.1038/srep03001 PubMed DOI PMC
Tryfona T., Theys T. E., Wagner T., Stott K., Keegstra K., Dupree P. (2014). Characterisation of FUT4 and FUT6 α-(1→2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases Arabidopsis root growth salt sensitivity. PLoS One 9:e93291. 10.1371/journal.pone.0093291 PubMed DOI PMC
Tsyganova A. V., Seliverstova E. V., Brewin N. J., Tsyganov V. E. (2019). Comparative analysis of remodelling of the plant-microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. Protoplasma 256 983–996. 10.1007/s00709-019-01355-5 PubMed DOI
Tsyganova A. V., Tsyganov V. E., Findlay K. C., Borisov A. Y., Tikhonovich I. A., Brewin N. J. (2009). Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. Cell Tissue Biol. 3 93–102. 10.1134/s1990519x09010131 PubMed DOI
Tucker M. R., Lou H., Aubert M. K., Wilkinson L. G., Little A., Houston K., et al. (2018). Exploring the role of cell wall-related genes and polysaccharides during plant development. Plants 7:42. 10.3390/plants7020042 PubMed DOI PMC
Turupcu A., Almohamed W., Oostenbrink C., Seifert G. J. (2018). A speculation on the tandem fasciclin 1 repeat of FLA4 proteins in angiosperms. Plant Signal. Behav. 13:e1507403. 10.1080/15592324.2018.1507403 PubMed DOI PMC
Van Hengel A. J., Roberts K. (2002). Fucosylated arabinogalactan-proteins are required for full root cell elongation in Arabidopsis. Plant J. 32 105–113. 10.1046/j.1365-313X.2002.01406.x PubMed DOI
Van Hengel A. J., Roberts K. (2003). AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J. 36 256–270. 10.1046/j.1365-313X.2003.01874.x PubMed DOI
Van Hengel A. J., Barber C., Roberts K. (2004). The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. Plant J. 39 70–83. 10.1111/j.1365-313X.2004.02104.x PubMed DOI
van Hengel A. J., Tadesse Z., Immerzeel P., Schols H., Van Kammen A., de Vries S. C. (2001). N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 125 1880–1890. 10.1104/pp.125.4.1880 PubMed DOI PMC
Velasquez S. M., Marzol E., Borassi C., Pol-Fachin L., Ricardi M. M., Mangano S., et al. (2015). Low sugar is not always good: impact of specific O-glycan defects on tip growth in Arabidopsis. Plant Physiol. 168 808–813. 10.1104/pp.114.255521 PubMed DOI PMC
Vicré M., Santaella C., Blanchet S., Gateau A., Driouich A. (2005). Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol. 138 998–1008. 10.1104/pp.104.051813 PubMed DOI PMC
Voxeur A., Hofte H. (2016). Cell wall integrity signaling in plants: “to grow or not to grow that’s the question”. Glycobiology 26 950–960. 10.1093/glycob/cww029 PubMed DOI
Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102 13386–13391. 10.1073/pnas.0504423102 PubMed DOI PMC
Wang H., Jiang C., Wang C., Yang Y., Yang L., Gao X., et al. (2015). Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J. Exp. Bot. 66 1291–1302. 10.1093/jxb/eru479 PubMed DOI PMC
Wang L., Cheng M., Yang Q., Li J., Wang X., Zhou Q., et al. (2019). Arabinogalactan protein-rare earth element complexes activate plant endocytosis. Proc. Natl. Acad. Sci. U.S.A. 116 14349–14357. 10.1073/pnas.1902532116 PubMed DOI PMC
Wang Y., Mortimer J. C., Davis J., Dupree P., Keegstra K. (2013). Identification of an additional protein involved in mannan biosynthesis. Plant J. 73 105–117. 10.1111/tpj.12019 PubMed DOI PMC
Willats W. G., Knox J. P. (1996). A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β−glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J. 9 919–925. 10.1046/j.1365-313X.1996.9060919.x PubMed DOI
Wu Y., Fan W., Li X., Chen H., Takac T., Samajova O., et al. (2017). Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and Fusarium oxysporum. Sci. Rep. 7:42400. 10.1038/srep42400 PubMed DOI PMC
Wubben M. J., II, Rodermel S. R., Baum T. J. (2004). Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. Plant J. 40 712–724. 10.1111/j.1365-313X.2004.02257.x PubMed DOI
Xie D., Ma L., Samaj J., Xu C. (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to Fusarium oxysporum f. sp. Benincasae infection and fusaric acid treatment. Plant Cell Rep. 30 1555–1569. 10.1007/s00299-011-1069-z PubMed DOI
Xu S. L., Rahman A., Baskin T. I., Kieber J. J. (2008). Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20 3065–3079. 10.1105/tpc.108.063354 PubMed DOI PMC
Xue H., Seifert G. J. (2015). Fasciclin like arabinogalactan protein 4 and respiratory burst oxidase homolog D and F independently modulate abscisic acid signaling. Plant Signal. Behav. 10:e989064. 10.4161/15592324.2014.989064 PubMed DOI PMC
Xue H., Veit C., Abas L., Tryfona T., Maresch D., Ricardi M. M., et al. (2017). Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. Plant J. 91 613–630. 10.1111/tpj.13591 PubMed DOI PMC
Yang J., Showalter A. M. (2007). Expression and localization of AtAGP18, a lysine-rich arabinogalactan-protein in Arabidopsis. Planta 226 169–179. 10.1007/s00425-007-0478-2 PubMed DOI
Yang J., Sardar H. S., McGovern K. R., Zhang Y., Showalter A. M. (2007). A lysine-rich arabinogalactan protein in Arabidopsis is essential for plant growth and development, including cell division and expansion. Plant J. 49 629–640. 10.1111/j.1365-313X.2006.02985.x PubMed DOI
Yang J., Zhang Y., Liang Y., Showalter A. M. (2011). Expression analyses of AtAGP17 and AtAGP19, two lysine-rich arabinogalactan proteins, in Arabidopsis. Plant Biol. 13 431–438. 10.1111/j.1438-8677.2010.00407.x PubMed DOI
Yariv J., Lis H., Katchalski E. (1967). Precipitation of Arabic acid and some seed polysaccharides by glycosylphenylazo dyes. Biochem. J. 105 1C–2C. 10.1042/bj1050001c PubMed DOI PMC
Yeats T. H., Bacic A., Johnson K. L. (2018). Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. J. Int. Plant Biol. 60 649–669. 10.1111/jipb.12659 PubMed DOI
Yu M., Zhao J. (2012). The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. BMC Plant Biol. 12:126. 10.1186/1471-2229-12-126 PubMed DOI PMC
Zagorchev L., Kamenova P., Odjakova M. (2014). The role of plant cell wall proteins in response to salt stress. Sci. World J. 2014:764089. 10.1155/2014/764089 PubMed DOI PMC
Zang L., Zheng T., Chu Y., Ding C., Zhang W., Huang Q., et al. (2015). Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in Populus. Front. Plant Sci. 6:1140. 10.3389/fpls.2015.01140 PubMed DOI PMC
Zhang Y., Held M. A., Showalter A. M. (2020). Elucidating the roles of three beta-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in Arabidopsis. BMC Plant Biol. 20:221. 10.1186/s12870-020-02420-5 PubMed DOI PMC
Zhang Y., Held M. A., Kaur D., Showalter A. M. (2021). CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in Arabidopsis. BMC Plant Biol. 21:16. 10.1186/s12870-020-02791-9 PubMed DOI PMC
Zhang Y., Yang J., Showalter A. M. (2011). AtAGP18 is localized at the plasma membrane and functions in plant growth and development. Planta 233 675–683. 10.1007/s00425-010-1331-6 PubMed DOI
Zhao C., Zayed O., Zeng F., Liu C., Zhang L., Zhu P., et al. (2019). Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytol. 224 274–290. 10.1111/nph.15867 PubMed DOI
Zhou K. (2019). Glycosylphosphatidylinositol-anchored proteins in Arabidopsis and one of their common roles in signaling transduction. Front. Plant Sci. 10:1022. 10.3389/fpls.2019.01022 PubMed DOI PMC
Zhu J. K., Shi J., Singh U., Wyatt S. E., Bressan R. A., Hasegawa P. M., et al. (1993). Enrichment of vitronectin-and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane–cell wall adhesion. Plant J. 3 637–646. 10.1111/j.1365-313X.1993.00637.x PubMed DOI
Zielinski K., Dubas E., Gersi Z., Krzewska M., Janas A., Nowicka A., et al. (2021). Beta-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). Plant Sci. 302:110700. PubMed