Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34079573
PubMed Central
PMC8165308
DOI
10.3389/fpls.2021.674010
Knihovny.cz E-zdroje
- Klíčová slova
- AGP, GPI anchor, arabinogalactan proteins, fasciclin-like, interactions, root growth, root hairs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Zobrazit více v PubMed
Acet T., Kadioglu A. (2020). SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in PubMed DOI PMC
Acosta-García G., Vielle-Calzada J.-P. (2004). A classical arabinogalactan protein is essential for the initiation of female gametogenesis in PubMed DOI PMC
Albert M., Belastegui-Macadam X., Kaldenhoff R. (2006). An attack of the plant parasite PubMed DOI
Andème-Onzighi C., Sivaguru M., Judy-March J., Baskin T. I., Driouich A. (2002). The reb1-1 mutation of PubMed DOI
Balestrini R., Lanfranco L. (2006). Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. PubMed DOI
Bartels D., Baumann A., Maeder M., Geske T., Heise E. M., von Schwartzenberg K., et al. (2017). Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. PubMed DOI
Basińska-Barczak A., Błaszczyk L., Szentner K. (2020). Plant cell wall changes in common wheat roots as a result of their interaction with beneficial fungi of PubMed DOI PMC
Baskin T. I., Betzner A. S., Hoggart R., Cork A., Williamson R. (1992). Root morphology mutants in DOI
Basu D., Liang Y., Liu X., Himmeldirk K., Faik A., Kieliszewski M., et al. (2013). Functional identification of a hydroxyproline-o-galactosyltransferase specific for arabinogalactan protein biosynthesis in PubMed DOI PMC
Basu D., Tian L., Debrosse T., Poirier E., Emch K., Herock H., et al. (2016). Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in PubMed DOI PMC
Basu D., Wang W., Ma S., DeBrosse T., Poirier E., Emch K., et al. (2015). Two hydroxyproline galactosyltransferases, GALT5 and GALT2, function in arabinogalactan-protein glycosylation, growth and development in PubMed DOI PMC
Baum T., Wubben M. K., II, Su H., Rodermel S. (2000). A screen for PubMed PMC
Beneventi M. A., da Silva O. B., de Sá M. E. L., Firmino A. A. P., de Amorim R. M. S., Albuquerque ÉV. S., et al. (2013). Transcription profile of soybean-root-knot nematode interaction reveals a key role of phythormones in the resistance reaction. PubMed DOI PMC
Berry A. M., Rasmussen U., Bateman K., Huss-Danell K., Lindwall S., Bergman B. (2002). Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of PubMed DOI
Bonin C. P., Potter I., Vanzin G. F., Reiter W.-D. (1997). The MUR1 gene of PubMed DOI PMC
Borassi C., Gloazzo Dorosz J., Ricardi M. M., Carignani Sardoy M., Pol Fachin L., Marzol E., et al. (2020). A cell surface arabinogalactan-peptide influences root hair cell fate. PubMed DOI
Borisov A. Y., Rozov S., Tsyganov V., Morzhina E., Lebsky V., Tikhonovich I. (1997). Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea ( PubMed DOI
Bossy A., Blaschek W., Classen B. (2009). Characterization and immunolocalization of arabinogalactan-proteins in roots of PubMed DOI
Bozbuga R., Lilley C. J., Knox J. P., Urwin P. E. (2018). Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, PubMed DOI PMC
Bradley D. J., Kjellbom P., Lamb C. J. (1992). Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. PubMed DOI
Brewin N. J. (2004). Plant cell wall remodelling in the DOI
Brewin N., Khodorenko A., Tsyganov V., Borisov A., Tikhonovich I., Rathbun E. (2008). “Legume AGP-extensins in DOI
Burget E. G., Reiter W.-D. (1999). The mur4 mutant of PubMed DOI PMC
Burget E. G., Verma R., Mølhøj M., Reiter W.-D. (2003). The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of PubMed DOI PMC
Caffall K. H., Mohnen D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. PubMed DOI
Cannesan M. A., Durand C., Burel C., Gangneux C., Lerouge P., Ishii T., et al. (2012). Effect of arabinogalactan proteins from the root caps of pea and PubMed DOI PMC
Casero P. J., Casimiro I., Knox J. P. (1998). Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. DOI
Castilleux R., Plancot B., Gugi B., Attard A., Loutelier-Bourhis C., Lefranc B., et al. (2020). Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. PubMed DOI PMC
Cheung A. Y., Wang H., Wu H.-M. (1995). A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. PubMed DOI
Cheung A., Wu H.-M. (1999). Arabinogalactan proteins in plant sexual reproduction. DOI
Cho H.-T. (2016). Arabinogalactan protein motif-containing receptor-like kinases are likely to play the negative feedback factor to maintain proper root hair length. PubMed DOI PMC
Clarke A., Anderson R., Stone B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. DOI
Classen B., Baumann A., Utermoehlen J. (2019). Arabinogalactan-proteins in spore-producing land plants. PubMed DOI
Coba de la Pena T., Fedorova E., Pueyo J. J., Lucas M. M. (2017). The symbiosome: legume and PubMed DOI PMC
Corral-Martinez P., Driouich A., Segui-Simarro J. M. (2019). Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in PubMed DOI PMC
Cosgrove D. J. (2005). Growth of the plant cell wall. PubMed DOI
Demesa-Arevalo E., Vielle-Calzada J. P. (2013). The classical arabinogalactan protein AGP18 mediates megaspore selection in PubMed DOI PMC
Ding L., Zhu J.-K. (1997). A role for arabinogalactan-proteins in root epidermal cell expansion. PubMed DOI
Dobon A., Canet J. V., Garcia-Andrade J., Angulo C., Neumetzler L., Persson S., et al. (2015). Novel disease susceptibility factors for fungal necrotrophic pathogens in PubMed DOI PMC
Dolan L., Linstead P., Roberts K. (1995). An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the DOI
Dos Santos A. L. W., Wiethölter N., El Gueddari N. E., Moerschbacher B. M. (2006). Protein expression during seed development in DOI
Driouich A., Smith C., Ropitaux M., Chambard M., Boulogne I., Bernard S., et al. (2019). Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? PubMed DOI
Duman Z., Eliyahu A., Abu-Abied M., Sadot E. (2020). The contribution of cell wall remodeling and signaling to lateral organs formation. DOI
Elkins T., Zinn K., McAllister L., HoffMann F. M., Goodman C. S. (1990). Genetic analysis of a PubMed DOI
Ellis M., Egelund J., Schultz C. J., Bacic A. (2010). Arabinogalactan-proteins: key regulators at the cell surface? PubMed DOI PMC
Faik A., Abouzouhair J., Sarhan F. (2006). Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat ( PubMed DOI
Ferguson B. J., Mens C., Hastwell A. H., Zhang M., Su H., Jones C. H., et al. (2019). Legume nodulation: the host controls the party. PubMed DOI
Fincher G. B., Stone B. A., Clarke A. E. (1983). Arabinogalactan-proteins: structure, biosynthesis, and function. DOI
Freshour G., Bonin C. P., Reiter W.-D., Albersheim P., Darvill A. G., Hahn M. G. (2003). Distribution of fucose-containing xyloglucans in cell walls of the PubMed DOI PMC
Galloway A. F., Akhtar J., Marcus S. E., Fletcher N., Field K., Knox P. (2020). Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties. PubMed DOI
Gantulga D., Turan Y., Bevan D. R., Esen A. (2008). The PubMed DOI
Gaspar Y. M., Nam J., Schultz C. J., Lee L.-Y., Gilson P. R., Gelvin S. B., et al. (2004). Characterization of the PubMed DOI PMC
Gigli-Bisceglia N., Engelsdorf T., Hamann T. (2020). Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. PubMed DOI PMC
Gille S., Sharma V., Baidoo E. E., Keasling J. D., Scheller H. V., Pauly M. (2013). Arabinosylation of a Yariv-precipitable cell wall polymer impacts plant growth as exemplified by the PubMed DOI
Gollotte A., Gianinazzi-Pearson V., Gianinazzi S. (1995). Immunodetection of infection thread glycoprotein and arabinogalactan protein in wild type
Harholt J., Jensen J. K., Verhertbruggen Y., Sogaard C., Bernard S., Nafisi M., et al. (2012). ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. PubMed DOI
Hawes M. C., Gunawardena U., Miyasaka S., Zhao X. (2000). The role of root border cells in plant defense. PubMed DOI
He J., Zhao H., Cheng Z., Ke Y., Liu J., Ma H. (2019). Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. PubMed DOI PMC
Herve C., Simeon A., Jam M., Cassin A., Johnson K. L., Salmean A. A., et al. (2016). Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in PubMed DOI
Hijazi M., Roujol D., Nguyen-Kim H., Del Rocio Cisneros Castillo L., Saland E., Jamet E., et al. (2014). Arabinogalactan protein 31 (AGP31), a putative network-forming protein in PubMed DOI PMC
Hossain Z., McGarvey B., Amyot L., Gruber M., Jung J., Hannoufa A. (2012). DIMINUTO 1 affects the lignin profile and secondary cell wall formation in PubMed DOI
Hozumi A., Bera S., Fujiwara D., Obayashi T., Yokoyama R., Nishitani K., et al. (2017). Arabinogalactan proteins accumulate in the cell walls of searching hyphae of the stem parasitic plants, PubMed DOI
Huang Y., Wang Y., Tan L., Sun L., Petrosino J., Cui M.-Z., et al. (2016). Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy. PubMed DOI PMC
Hwang Y., Lee H., Lee Y. S., Cho H. T. (2016). Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of PubMed DOI PMC
Immerzeel P., Eppink M. M., de Vries S. C., Schols H. A., Voragen A. G. J. (2006). Carrot arabinogalactan proteins are interlinked with pectins. DOI
Irani S., Trost B., Waldner M., Nayidu N., Tu J., Kusalik A. J., et al. (2018). Transcriptome analysis of response to PubMed DOI PMC
Ito S., Suzuki Y., Miyamoto K., Ueda J., Yamaguchi I. (2005). AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in screlenchyma cells. PubMed DOI
Jackson O., Taylor O., Adams D. G., Knox J. P. (2012). Arabinogalactan proteins occur in the free-living cyanobacterium genus PubMed DOI
Jia Z., Giehl R. F. H., von Wiren N. (2020). The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. PubMed DOI PMC
Jiao Y., Sun L., Song Y., Wang L., Liu L., Zhang L., et al. (2013). AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in PubMed DOI
Jing Y., Shi L., Li X., Zheng H., He L. (2019). AGP30: Cd tolerance related gene associate with mitochondrial pyruvate carrier 1. PubMed DOI PMC
Johnson K. L., Cassin A. M., Lonsdale A., Wong G. K., Soltis D. E., Miles N. W., et al. (2017). Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. PubMed DOI PMC
Johnson K. L., Kibble N. A., Bacic A., Schultz C. J. (2011). A fasciclin-like arabinogalactan-protein (FLA) mutant of PubMed DOI PMC
Kirchner T. W., Niehaus M., Rossig K. L., Lauterbach T., Herde M., Kuster H., et al. (2018). Molecular background of Pi deficiency-induced root hair growth in PubMed DOI PMC
Kjellbom P., Snogerup L., Stöhr C., Reuzeau C., McCabe P. F., Pennell R. I. (1997). Oxidative cross-linking of plasma membrane arabinogalactan proteins. PubMed DOI
Klahre U., Noguchi T., Fujioka S., Takatsuto S., Yokota T., Nomura T., et al. (1998). The PubMed DOI PMC
Knox J. P., Day S., Roberts K. (1989). A set of cell surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of
Knox P. (2016). Delving in the deep for the origin of plant cell surface proteoglycans. PubMed DOI
Koroney A. S., Plasson C., Pawlak B., Sidikou R., Driouich A., Menu-Bouaouiche L., et al. (2016). Root exudate of PubMed DOI PMC
Kreuger M., van Holst G.-J. (1993). Arabinogalactan proteins are essential in somatic embryogenesis of DOI
Lamport D. T., Varnai P. (2013). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. PubMed DOI
Lamport D. T., Kieliszewski M. J., Showalter A. M. (2006). Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. PubMed DOI
Lamport D. T., Tan L., Held M. A., Kieliszewski M. J. (2018). Pollen tube growth and guidance: Occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta stone. PubMed DOI
Lee K. J., Sakata Y., Mau S.-L., Pettolino F., Bacic A., Quatrano R. S., et al. (2005). Arabinogalactan proteins are required for apical cell extension in the moss PubMed DOI PMC
Leszczuk A., Cybulska J., Skrzypek T., Zdunek A. (2020a). Properties of arabinogalactan proteins (AGPs) in apple ( PubMed DOI PMC
Leszczuk A., Kalaitzis P., Blazakis K. N., Zdunek A. (2020b). The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. PubMed DOI PMC
Li J., Yu M., Geng L. L., Zhao J. (2010). The fasciclin-like arabinogalactan protein gene, PubMed DOI
Lin W. D., Liao Y. Y., Yang T. J., Pan C. Y., Buckhout T. J., Schmidt W. (2011). Coexpression-based clustering of PubMed DOI PMC
Liu D., Tu L., Li Y., Wang L., Zhu L., Zhang X. (2008). Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. DOI
Liu E., MacMillan C. P., Shafee T., Ma Y., Ratcliffe J., van de Meene A., et al. (2020). Fasciclin-like arabinogalactan-protein 16 (FLA16) is required for stem development in PubMed DOI PMC
Lopez-Hernandez F., Tryfona T., Rizza A., Yu X. L., Harris M. O. B., Webb A. A. R., et al. (2020). Calcium binding by arabinogalactan polysaccharides is important for normal plant development. PubMed DOI PMC
Ma H., Zhao J. (2010). Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice ( PubMed DOI PMC
Ma Y., Yan C., Li H., Wu W., Liu Y., Wang Y., et al. (2017). Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. PubMed DOI PMC
MacMillan C. P., Mansfield S. D., Stachurski Z. H., Evans R., Southerton S. G. (2010). Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in PubMed DOI
MacMillan C. P., Taylor L., Bi Y., Southerton S. G., Evans R., Spokevicius A. (2015). The fasciclin-like arabinogalactan protein family of PubMed DOI
Mareri L., Romi M., Cai G. (2018). Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? DOI
Marquez N., Giachero M. L., Gallou A., Debat H. J., Cranenbrouck S., Di Rienzo J. A., et al. (2018). Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen PubMed DOI
Marzec M., Szarejko I., Melzer M. (2015). Arabinogalactan proteins are involved in root hair development in barley. PubMed DOI PMC
McCartney L., Steele-King C. G., Jordan E., Knox J. P. (2003). Cell wall pectic (1→4)−β−d-galactan marks the acceleration of cell elongation in the PubMed DOI
Nam J., Mysore K., Zheng C., Knue M., Matthysse A., Gelvin S. (1999). Identification of T-DNA tagged PubMed DOI
Nguema-Ona E., Andème-Onzighi C., Aboughe-Angone S., Bardor M., Ishii T., Lerouge P., et al. (2006). The PubMed DOI PMC
Nguema-Ona E., Bannigan A., Chevalier L., Baskin T., I, Driouich A. (2007). Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of PubMed DOI
Nguema-Ona E., Coimbra S., Vicré-Gibouin M., Mollet J.-C., Driouich A. (2012). Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. PubMed DOI PMC
Nguema-Ona E., Vicre-Gibouin M., Cannesan M. A., Driouich A. (2013). Arabinogalactan proteins in root-microbe interactions. PubMed DOI
Nguema-Ona E., Vicre-Gibouin M., Gotte M., Plancot B., Lerouge P., Bardor M., et al. (2014). Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. PubMed DOI PMC
Nibbering P., Petersen B. L., Motawia M. S., Jorgensen B., Ulvskov P., Niittyla T. (2020). Golgi-localized exo-beta1,3-galactosidases involved in cell expansion and root growth in PubMed DOI PMC
Nivedita, Gazara R. K., Khan S., Iqrar S., Ashrafi K., Abdin M. Z. (2020). Comparative transcriptome profiling of rice colonized with beneficial endophyte, PubMed DOI
Ogawa-Ohnishi M., Matsubayashi Y. (2015). Identification of three potent hydroxyproline O-galactosyltransferases in PubMed DOI
Olmos E., Garcia De La Garma J., Gomez-Jimenez M. C., Fernandez-Garcia N. (2017). Arabinogalactan proteins are involved in salt-adaptation and vesicle trafficking in tobacco by-2 cell cultures. PubMed DOI PMC
Palacio-Lopez K., Tinaz B., Holzinger A., Domozych D. S. (2019). Arabinogalactan proteins and the extracellular matrix of Charophytes: a sticky business. PubMed DOI PMC
Pereira A. M., Pereira L. G., Coimbra S. (2015). Arabinogalactan proteins: rising attention from plant biologists. PubMed DOI
Perez-Perez Y., Carneros E., Berenguer E., Solis M. T., Barany I., Pintos B., et al. (2018). Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of PubMed DOI PMC
Pfeifer L., Shafee T., Johnson K. L., Bacic A., Classen B. (2020). Arabinogalactan-proteins of PubMed DOI PMC
Pielach A., Leroux O., Domozych D. S., Knox J. P., Popper Z. A. (2014). Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria. PubMed DOI PMC
Plancot B., Santaella C., Jaber R., Kiefer-Meyer M. C., Follet-Gueye M. L., Leprince J., et al. (2013). Deciphering the responses of root border-like cells of PubMed DOI PMC
Přerovská T., Henke S., Bleha R., Spiwok V., Gillarová S., Yvin J. C., et al. (2021). Arabinogalactan-like glycoproteins from PubMed DOI
Rashid A. (2016). Defense responses of plant cell wall non-catalytic proteins against pathogens. DOI
Rathbun E. A., Naldrett M. J., Brewin N. J. (2002). Identification of a family of extensin-like glycoproteins in the lumen of PubMed DOI
Reguera M., Abreu I., Brewin N. J., Bonilla I., Bolanos L. (2010). Borate promotes the formation of a complex between legume AGP-extensin and Rhamnogalacturonan II and enhances production of PubMed DOI
Reiter W. D., Chapple C., Somerville C. R. (1997). Mutants of PubMed DOI
Reiter W.-D., Chapple C. C., Somerville C. R. (1993). Altered growth and cell walls in a fucose-deficient mutant of PubMed DOI
Ropitaux M., Bernard S., Schapman D., Follet-Gueye M. L., Vicre M., Boulogne I., et al. (2020). Root border cells and mucilage secretions of soybean, PubMed DOI PMC
Rui Y., Dinneny J. R. (2020). A wall with integrity: surveillance and maintenance of the plant cell wall under stress. PubMed DOI
Sala K., Malarz K., Barlow P. W., Kurczynska E. U. (2017). Distribution of some pectic and arabinogalactan protein epitopes during PubMed DOI PMC
Šamaj J., Braun M., Baluška F., Ensikat H.-J., Tsumuraya Y., Volkmann D. (1999). Specific localization of arabinogalactan-protein epitopes at the surface of maize root hairs. DOI
Schultz C. J., Harrison M. J. (2008). Novel plant and fungal AGP-like proteins in the PubMed DOI
Schultz C., Gilson P., Oxley D., Youl J., Bacic A. (1998). GPI-anchors on arabinogalactan-proteins: implications for signalling in plants. DOI
Seifert G. J. (2018). Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. PubMed DOI PMC
Seifert G. J. (2020). On the potential function of type II arabinogalactan O-glycosylation in regulating the fate of plant secretory proteins. PubMed DOI PMC
Seifert G. J. (2021). The FLA4-FEI pathway: a unique and mysterious signaling module related to cell wall structure and stress signaling. PubMed DOI PMC
Seifert G. J., Blaukopf C. (2010). Irritable walls: the plant extracellular matrix and signaling. PubMed DOI PMC
Seifert G. J., Roberts K. (2007). The biology of arabinogalactan proteins. PubMed DOI
Seifert G. J., Barber C., Wells B., Dolan L., Roberts K. (2002). Galactose biosynthesis in PubMed DOI
Seifert G. J., Xue H., Acet T. (2014). The PubMed DOI PMC
Shailasree S., Kini K. R., Deepak S., Kumudini B. S., Shetty H. S. (2004). Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to DOI
Shi H., Kim Y., Guo Y., Stevenson B., Zhu J.-K. (2003). The PubMed DOI PMC
Shimizu K., Aoki K. (2019). Development of parasitic organs of a stem holoparasitic plant in genus PubMed DOI PMC
Showalter A. (2001). Arabinogalactan-proteins: structure, expression and function. PubMed DOI PMC
Showalter A. M., Basu D. (2016). Glycosylation of arabinogalactan-proteins essential for development in PubMed DOI PMC
Silva J., Ferraz R., Dupree P., Showalter A. M., Coimbra S. (2020). Three decades of advances in arabinogalactan-protein biosynthesis. PubMed DOI PMC
Silva T. F., Ferreira B. G., Dos Santos Isaias R. M., Alexandre S. S., Franca M. G. C. (2020). Immunocytochemistry and density functional theory evidence the competition of aluminum and calcium for pectin binding in PubMed DOI
Snow P. M., Bieber A. J., Goodman C. S. (1989). Fasciclin III: a novel homophilic adhesion molecule in PubMed DOI
Somssich M., Khan G. A., Persson S. (2016). Cell wall heterogeneity in root development of PubMed DOI PMC
Striberny B., Krause K. (2015). Cell wall glycoproteins at interaction sites between parasitic giant dodder ( PubMed DOI PMC
Su S., Higashiyama T. (2018). Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. PubMed DOI
Swamy M. K., Akhtar M. S., Sinniah U. R. (2016). “Root exudates and their molecular interactions with rhizospheric microbes,” in DOI
Takahashi T., Gasch A., Nishizawa N., Chua N.-H. (1995). The DIMINUTO gene of PubMed DOI
Tan L., Eberhard S., Pattathil S., Warder C., Glushka J., Yuan C., et al. (2013). An PubMed DOI PMC
Tan L., Tees D., Qian J., Kareem S., Kieliszewski M. J. (2018). Intermolecular interactions between glycomodules of plant cell wall arabinogalactan-proteins and extensins. PubMed DOI PMC
Trivedi D. K., Bhatt H., Pal R. K., Tuteja R., Garg B., Johri A. K., et al. (2013). Structure of RNA-interacting cyclophilin A-like protein from PubMed DOI PMC
Tryfona T., Theys T. E., Wagner T., Stott K., Keegstra K., Dupree P. (2014). Characterisation of FUT4 and FUT6 α-(1→2)-fucosyltransferases reveals that absence of root arabinogalactan fucosylation increases PubMed DOI PMC
Tsyganova A. V., Seliverstova E. V., Brewin N. J., Tsyganov V. E. (2019). Comparative analysis of remodelling of the plant-microbe interface in PubMed DOI
Tsyganova A. V., Tsyganov V. E., Findlay K. C., Borisov A. Y., Tikhonovich I. A., Brewin N. J. (2009). Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. PubMed DOI
Tucker M. R., Lou H., Aubert M. K., Wilkinson L. G., Little A., Houston K., et al. (2018). Exploring the role of cell wall-related genes and polysaccharides during plant development. PubMed DOI PMC
Turupcu A., Almohamed W., Oostenbrink C., Seifert G. J. (2018). A speculation on the tandem fasciclin 1 repeat of FLA4 proteins in angiosperms. PubMed DOI PMC
Van Hengel A. J., Roberts K. (2002). Fucosylated arabinogalactan-proteins are required for full root cell elongation in PubMed DOI
Van Hengel A. J., Roberts K. (2003). AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. PubMed DOI
Van Hengel A. J., Barber C., Roberts K. (2004). The expression patterns of arabinogalactan-protein PubMed DOI
van Hengel A. J., Tadesse Z., Immerzeel P., Schols H., Van Kammen A., de Vries S. C. (2001). N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. PubMed DOI PMC
Velasquez S. M., Marzol E., Borassi C., Pol-Fachin L., Ricardi M. M., Mangano S., et al. (2015). Low sugar is not always good: impact of specific O-glycan defects on tip growth in PubMed DOI PMC
Vicré M., Santaella C., Blanchet S., Gateau A., Driouich A. (2005). Root border-like cells of PubMed DOI PMC
Voxeur A., Hofte H. (2016). Cell wall integrity signaling in plants: “to grow or not to grow that’s the question”. PubMed DOI
Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., et al. (2005). The endophytic fungus PubMed DOI PMC
Wang H., Jiang C., Wang C., Yang Y., Yang L., Gao X., et al. (2015). Antisense expression of the fasciclin-like arabinogalactan protein PubMed DOI PMC
Wang L., Cheng M., Yang Q., Li J., Wang X., Zhou Q., et al. (2019). Arabinogalactan protein-rare earth element complexes activate plant endocytosis. PubMed DOI PMC
Wang Y., Mortimer J. C., Davis J., Dupree P., Keegstra K. (2013). Identification of an additional protein involved in mannan biosynthesis. PubMed DOI PMC
Willats W. G., Knox J. P. (1996). A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β−glucosyl Yariv reagent with seedlings of PubMed DOI
Wu Y., Fan W., Li X., Chen H., Takac T., Samajova O., et al. (2017). Expression and distribution of extensins and AGPs in susceptible and resistant banana cultivars in response to wounding and PubMed DOI PMC
Wubben M. J., II, Rodermel S. R., Baum T. J. (2004). Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in PubMed DOI
Xie D., Ma L., Samaj J., Xu C. (2011). Immunohistochemical analysis of cell wall hydroxyproline-rich glycoproteins in the roots of resistant and susceptible wax gourd cultivars in response to PubMed DOI
Xu S. L., Rahman A., Baskin T. I., Kieber J. J. (2008). Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in PubMed DOI PMC
Xue H., Seifert G. J. (2015). Fasciclin like arabinogalactan protein 4 and respiratory burst oxidase homolog D and F independently modulate abscisic acid signaling. PubMed DOI PMC
Xue H., Veit C., Abas L., Tryfona T., Maresch D., Ricardi M. M., et al. (2017). PubMed DOI PMC
Yang J., Showalter A. M. (2007). Expression and localization of AtAGP18, a lysine-rich arabinogalactan-protein in PubMed DOI
Yang J., Sardar H. S., McGovern K. R., Zhang Y., Showalter A. M. (2007). A lysine-rich arabinogalactan protein in PubMed DOI
Yang J., Zhang Y., Liang Y., Showalter A. M. (2011). Expression analyses of AtAGP17 and AtAGP19, two lysine-rich arabinogalactan proteins, in PubMed DOI
Yariv J., Lis H., Katchalski E. (1967). Precipitation of Arabic acid and some seed polysaccharides by glycosylphenylazo dyes. PubMed DOI PMC
Yeats T. H., Bacic A., Johnson K. L. (2018). Plant glycosylphosphatidylinositol anchored proteins at the plasma membrane-cell wall nexus. PubMed DOI
Yu M., Zhao J. (2012). The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation. PubMed DOI PMC
Zagorchev L., Kamenova P., Odjakova M. (2014). The role of plant cell wall proteins in response to salt stress. PubMed DOI PMC
Zang L., Zheng T., Chu Y., Ding C., Zhang W., Huang Q., et al. (2015). Genome-wide analysis of the fasciclin-like arabinogalactan protein gene family reveals differential expression patterns, localization, and salt stress response in PubMed DOI PMC
Zhang Y., Held M. A., Showalter A. M. (2020). Elucidating the roles of three beta-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in PubMed DOI PMC
Zhang Y., Held M. A., Kaur D., Showalter A. M. (2021). CRISPR-Cas9 multiplex genome editing of the hydroxyproline-O-galactosyltransferase gene family alters arabinogalactan-protein glycosylation and function in PubMed DOI PMC
Zhang Y., Yang J., Showalter A. M. (2011). AtAGP18 is localized at the plasma membrane and functions in plant growth and development. PubMed DOI
Zhao C., Zayed O., Zeng F., Liu C., Zhang L., Zhu P., et al. (2019). Arabinose biosynthesis is critical for salt stress tolerance in PubMed DOI
Zhou K. (2019). Glycosylphosphatidylinositol-anchored proteins in PubMed DOI PMC
Zhu J. K., Shi J., Singh U., Wyatt S. E., Bressan R. A., Hasegawa P. M., et al. (1993). Enrichment of vitronectin-and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane–cell wall adhesion. PubMed DOI
Zielinski K., Dubas E., Gersi Z., Krzewska M., Janas A., Nowicka A., et al. (2021). Beta-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye ( PubMed