Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs

. 2021 Apr ; 57 (2) : 619-635. [epub] 20210219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33338254

Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the β-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.

Zobrazit více v PubMed

Alsufyani, T., Califano, G., Deicke, M., Grueneberg, J., Weiss, A., Engelen, A. H., Kwantes, M., Mohr, J. F., Ulrich, J. F. & Wichard, T. 2020. Macroalgal-bacterial interactions: identification and role of thallusin in morphogenesis of the seaweed Ulva (Chlorophyta). J. Exp. Bot. 71:3340-9.

Baldwin, T. C., McCann, M. C. & Roberts, K. 1993. A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota (purification and partial characterization). Plant Physiol. 103:115-23.

Bartels, D., Baumann, A., Maeder, M., Geske, T., Heise, E. M., von Schwartzenberg, K. & Classen, B. 2017. Evolution of plant cell wall: arabinogalactan-proteins from three moss genera show structural differences compared to seed plants. Carbohydr. Polym. 163:227-35.

Bartels, D. & Classen, B. 2017. Structural investigations on arabinogalactan-proteins from a lycophyte and different monilophytes (ferns) in the evolutionary context. Carbohydr. Polym. 172:342-51.

Blumenkrantz, N. & Aboe-Hansen, G. 1973. New method for quantitative determination of uronic acids. Anal. Biochem. 54:484-89.

Bobalek, J. F. & Johnson, M. A. 1983. Arabinogalactan-proteins from douglas fir and loblolly pine. Phytochemistry 22:1500-3.

Bollig, K., Lamshöft, M., Schweimer, K., Marner, F.-J., Budzikiewicz, H. & Waffenschmidt, S. 2007. Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii-conservation of the inner core in Chlamydomonas and land plants. Carbohydr. Res. 342:2557-66.

Borderies, G., le Béchec, M., Rossignol, M., Lafitte, C., Le Deunff, E., Beckert, M., Dumas, C. & Matthys-Rochon, E. 2004. Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur. J. Cell Biol. 83:205-12.

Bossy, A., Blaschek, W. & Classen, B. 2009. Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea. Planta Med. 75:1526-33.

Brooks, S. A. 2009. Strategies for analysis of the glycosylation of proteins: current status and future perspectives. Mol. Biotechnol. 43:76-88.

Capek, P., Matulová, M. & Combourieu, B. 2008. The extracellular proteoglycan produced by Rhodella grisea. Int. J. Biol. Macromol. 43:390-3.

Classen, B., Baumann, A. & Utermoehlen, J. 2019. Arabinogalactan-proteins in spore-producing land plants. Carbohydr. Polym. 210:215-24.

DeClerck, O., Kao, S. M., Bogaert, K. A., Blomme, J., Foflonker, F., Kwantes, M., Vancaester, E. et al. 2018. Insights into the evolution of multicellularity from the sea lettuce genome. Curr. Biol. 28:2921-33.

Domozych, D., Ciancia, M., Fangel, J. U., Mikkelsen, M. D., Ulvskov, P. & Willats, W. G. T. 2012. The cell walls of green algae: a journey through evolution and diversity. Front. Plant Sci. 3:82.

Domozych, D. S., Elliott, L., Kiemle, S. N. & Gretz, M. R. 2007. Pleurotaenium trabecula, a desmid of wetland biofilms: the extracellular matrix and adhesion mechanisms. J. Phycol. 43:1022-38.

Domozych, D. S., Sørensen, I., Pettolino, F. A., Bacic, A. & Willats, W. G. T. 2010. The cell wall polymers of the charophycean green alga Chara corallina: immunobinding and biochemical screening. Int. J. Plant Sci. 171:345-61.

Eder, M., Tenhaken, R., Driouich, A. & Lütz-Meindl, U. 2008. Occurrence and characterization of arabinogalactan-like proteins and hemicelluloses in Micrasterias (Streptophyta). J. Phycol. 44:1221-34.

Ellis, M., Egelund, J., Schultz, C. J. & Bacic, A. 2010. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol. 153:403-19.

Estevez, J. M., Fernández, P. V., Kasulin, L., Dupree, P. & Ciancia, M. 2009. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19:212-28.

Estevez, J. M., Leonardi, P. I. & Alberghina, J. S. 2008. Cell wall carbohydrate epitopes in the green alga Oedogonium bharuchae f. minor (Oedogoniales, Chlorophyta). J. Phycol. 44:1257-68.

Fernández, P. V., Ciancia, M., Miravalles, A. B. & Estevez, J. M. 2010. Cell-wall polymer mapping in the coenocytic macroalga Codium vermilara (Bryopsidales, Chlorophyta). J. Phycol. 46:456-65.

Fernández, P. V., Raffo, M. P., Alberghina, J. & Ciancia, M. 2015. Polysaccharides from the green seaweed Codium decorticatum. Structure and cell wall distribution. Carbohydr. Polym. 117:836-44.

Fountoulakis, M. & Lahm, H. W. 1998. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826:109-34.

Fragkostefanakis, S., Dandachi, F. & Kalaitzis, P. 2012. Expression of arabinogalactan proteins during tomato fruit ripening and in response to mechanical wounding, hypoxia and anoxia. Plant Physiol. Biochem. 52:112-8.

Fu, H., Yadav, M. P. & Nothnagel, E. A. 2007. Physcomitrella patens arabinogalactan proteins contain abundant terminal 3-O-methyl-l-rhamnosyl residues not found in angiosperms. Planta 226:1511-24.

Gao, M., Kieliszewski, M. J., Lamport, D. T. A. & Showalter, A. M. 1999. Isolation, characterization and immunolocalization of a novel, modular tomato arabinogalactan-protein corresponding to the LeAGP-1 gene. Plant J. 18:43-55.

Gao, X., Qu, H., Shan, S., Song, C., Baranenko, D., Li, Y. & Lu, W. 2020. A novel polysaccharide isolated from Ulva pertusa: structure and physicochemical property. Carbohydr. Polym. 233:115849.

Golaz, O., Wilkins, M. R., Sanchez, J. C., Appel, R. D., Hochstrasser, D. F. & Williams, K. L. 1996. Identification of proteins by their amino acid composition: an evaluation of the method. Electrophoresis 17:573-9.

Göllner, E. M., Blaschek, W. & Classen, B. 2010. Structural investigations on arabinogalactan-protein from wheat, isolated with Yariv reagent. J. Agric. Food Chem. 58:3621-6.

Gorres, K. L. & Raines, R. T. 2010. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 45:106-24.

Guan, Y. & Nothnagel, E. A. 2004. Binding of arabinogalactan proteins by yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol. 135:1346-66.

Happ, K. & Classen, B. 2019. Arabinogalactan-proteins from the liverwort Marchantia polymorpha L., a member of a basal land plant lineage, are structurally different to those of angiosperms. Plants 8:460.

He, J., Zhao, H., Cheng, Z., Ke, Y., Liu, J. & Ma, H. 2019. Evolution analysis of the fasciclin-like arabinogalactan proteins in plants shows variable fasciclin-AGP domain constitutions. Int. J. Mol. Sci. 20:1945.

Hervé, C., Siméon, A., Jam, M., Cassin, A., Johnson, K. L., Salmeán, A. A., Willats, W. G. T., Doblin, M. S., Bacic, A. & Kloareg, B. 2015. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. New Phytol. 209:1428-41.

Hijazi, M., Roujol, D., Nguyen-Kim, H., del Rocio Cisneros Castillo, L., Saland, E., Jamet, E. & Albenne, C. 2014. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? Ann. Bot. 114:1087-97.

Immerzeel, P., Eppink, M. M., de Vries, S. C., Schols, H. A. & Voragen, A. G. J. 2006. Carrot arabinogalactan proteins are interlinked with pectins. Physiol. Plant. 128:18-28.

Jamet, E., Boudart, G., Borderies, G., Charmont, S., Lafitte, C., Rossignol, M., Canut, H. & Pont-Lezica, R. 2008. Isolation of plant cell wall proteins. In Posch, A. [Ed.] 2D PAGE: Sample Preparation and Fractionation. Humana Press, Totowa, New Jersey, pp. 187-201.

Johnson, K. L., Cassin, A. M., Lonsdale, A., Wong, G. K.-S., Soltis, D. E., Miles, N. W., Melkonian, M. et al. 2017. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiol. 174:904-21.

Kadam, S. U., Álvarez, C., Tiwari, B. K. & O’Donnell, C. P. 2015. Chapter 9 - Extraction of biomolecules from seaweeds. In Tiwari, B. K. & Troy, D. J. [Eds] Seaweed Sustainability. Academic Press, San Diego, USA, pp 243-69.

Kieliszewski, M. J., Lamport, D. T. A., Tan, L. & Cannon, M. C. 2010. Hydroxyproline-rich glycoproteins: form and function. In Ulvskov, P. [Ed.] Annual Plant Reviews. Vol. 41. John Wiley & Sons Ltd, Chichester, UK, pp. 321-42.

Kieliszewski, M. J. & Shpak, E. 2001. Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cell. Mol. Life Sci. CMLS. 58:1386-98.

Kitazawa, K., Tryfona, T., Yoshimi, Y., Hayashi, Y., Kawauchi, S., Antonov, L., Tanaka, H. et al. 2013. β-Galactosyl Yariv reagent binds to the β-1,3-galactan of arabinogalactan proteins. Plant Physiol. 161:1117-26.

Knox, J. P. 1995. Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB J. 9:1004-12.

Knox, J. P. 2008. Revealing the structural and functional diversity of plant cell walls. Curr. Opin. Plant Biol. 11:308-13.

Kostas, E. T., White, D. A. & Cook, D. J. 2020. Bioethanol production from UK seaweeds: investigating variable pre-treatment and enzyme hydrolysis parameters. BioEnergy Res. 13:271-85.

Lahaye, M. & Robic, A. 2007. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromol. 8:1766-74.

Lamport, D. T. A. & Várnai, P. 2013. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytol. 197:58-64.

Leszczuk, A., Cybulska, J., Skrzypek, T. & Zdunek, A. 2020. Properties of arabinogalactan proteins (AGPs) in apple (Malus × Domestica) fruit at different stages of ripening. Biology 9:225.

Levy-Ontman, O., Arad, S., Harvey, D. J., Parsons, T. B., Fairbanks, A. & Tekoah, Y. 2011. Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J. Biol. Chem. 286:21340-52.

Lin, Z., Lin, Z., Li, H. & Shen, S. 2012. Sequences analysis of ITS region and 18S rDNA of Ulva. Int. Scholarly Res. Not. 2012:468193.

Ludwig, T. G. & Goldberg, H. J. V. 1956. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J. Dent. Res. 35:90-94.

Ma, Y., Yan, C., Li, H., Wu, W., Liu, Y., Wang, Y., Chen, Q. & Ma, H. 2017. Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front. Plant Sci. 8:66.

Ma, Y., Zeng, W., Bacic, A. & Johnson, K. 2018. AGPs through time and space. In Roberts, J. A. [Ed.] Annual Plant Reviews Online. John Wiley & Sons Ltd, Chichester, UK, pp. 767-804.

Maneein, S., Milledge, J. J., Nielsen, B. V. & Harvey, P. J. 2018. A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 4:100.

Mareri, L., Romi, M. & Cai, G. 2019. Arabinogalactan proteins: actors or spectators during abiotic and biotic stress in plants? Plant Biosyst. 153:173-85.

Mathieu-Rivet, E., Scholz, M., Arias, C., Dardelle, F., Schulze, S., Mauff, F. L., Teo, G. et al. 2013. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol. Cell. Proteomics 12:3160-83.

Michalak, I. & Chojnacka, K. 2015. Algae as production systems of bioactive compounds. Eng. Life Sci. 15:160-76.

Mishra, V., Dubey, A. & Prajapti, S. K. 2017. Algal biomass pretreatment for improved biofuel production. In Gupta, S. K., Malik, A. & Bux, F. [Eds.] Algal Biofuels: Recent Advances and Future Prospects. Springer International Publishing, Cham, Switzerland, pp 259-80.

Mócsai, R., Figl, R., Troschl, C., Strasser, R., Svehla, E., Windwarder, M., Thader, A. & Altmann, F. 2019. N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Sci. Rep. 9:1-8.

Nguema-Ona, E., Bannigan, A., Chevalier, L., Baskin, T. I. & Driouich, A. 2007. Disruption of arabinogalactan proteins disorganizes cortical microtubules in the root of Arabidopsis thaliana. Plant J. 52:240-51.

Nguema-Ona, E., Coimbra, S., Vicré-Gibouin, M., Mollet, J. C. & Driouich, A. 2012. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann. Bot. 110:383-404.

Nguema-Ona, E., Vicré-Gibouin, M., Gotté, M., Plancot, B., Lerouge, P., Bardor, M. & Driouich, A. 2014. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function. Front. Plant Sci. 5:499.

Nothnagel, E. A. 1997. Proteoglycans and related components in plant cells. In Jeon, K. W. [Ed.] International Review of Cytology. Academic Press, San Diego, CA, USA, pp. 195-291.

Palacio-López, K., Tinaz, B., Holzinger, A. & Domozych, D. S. 2019. Arabinogalactan proteins and the extracellular matrix of charophytes: a sticky business. Front. Plant Sci. 10:447.

Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., Bootten, T. et al. 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol. 153:514-25.

Paulsen, B. S., Craik, D. J., Dunstan, D. E., Stone, B. A. & Bacic, A. 2014. The Yariv reagent: behaviour in different solvents and interaction with a gum arabic arabinogalactanprotein. Carbohydr. Polym. 106:460-8.

Pellerin, P., Vidal, S., Williams, P. & Brillouet, J. M. 1995. Characterization of five type II arabinogalactan-protein fractions from red wine of increasing uronic acid content. Carbohydr. Res. 277:135-43.

Pfeifer, L. & Classen, B. 2020. Validation of a rapid GC-MS Procedure for quantitative distinction between 3-O-methyl- and 4-O-methyl-hexoses and its application to a complex carbohydrate sample. Separations 7:42.

Pfeifer, L., Shafee, T., Johnson, K. L., Bacic, A. & Classen, B. 2020. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci. Rep. 10:8232.

Polikovsky, M., Califano, G., Dunger, N., Wichard, T. & Golberg, A. 2020. Engineering bacteria-seaweed symbioses for modulating the photosynthate content of Ulva (Chlorophyta): significant for the feedstock of bioethanol production. Algal Res. 49:101945.

Popper, Z. A., Michel, G., Hervé, C., Domozych, D. S., Willats, W. G. T., Tuohy, M. G., Kloareg, B. & Stengel, D. B. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567-90.

Printz, B., Dos Santos Morais, R., Wienkoop, S., Sergeant, K., Lutts, S., Hausman, J. F. & Renaut, J. 2015. An improved protocol to study the plant cell wall proteome. Front. Plant Sci. 6:237.

Putoczki, T. L., Pettolino, F., Griffin, M. D. W., Möller, R., Gerrard, J. A., Bacic, A. & Jackson, S. L. 2007. Characterization of the structure, expression and function of Pinus radiata D. Don arabinogalactan-proteins. Planta 226:1131-42.

Ruprecht, C., Bartetzko, M. P., Senf, D., Dallabernadina, P., Boos, I., Andersen, M. C. F., Kotake, T., Knox, J. P., Hahn, M. G., Clausen, M. H. & Pfrengle, F. 2017. A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies. Plant Physiol. 175:1094-104.

Rutherfurd, S. M. & Gilani, G. S. 2009. Amino acid analysis. Curr. Protoc. Protein Sci. 58:11.9.1-11.9.37.

Rydahl, M. G., Hansen, A. R., Kračun, S. K. & Mravec, J. 2018. Report on the current inventory of the toolbox for plant cell wall analysis: proteinaceous and small molecular probes. Front. Plant Sci. 9:581.

Sato, K., Hara, K., Yoshimi, Y., Kitazawa, K., Ito, H., Tsumuraya, Y. & Kotake, T. 2018. Yariv reactivity of type II arabinogalactan from larch wood. Carbohydr. Res. 467:8-13.

Schultz, C. J., Johnson, K. L., Currie, G. & Bacic, A. 2000. The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell. 12:1751-67.

Segev, E., Wyche, T. P., Kim, K. H., Petersen, J., Ellebrandt, C., Vlamakis, H., Barteneva, N., Paulson, J. N., Chai, L., Clardy, J. & Kolter, R. 2016. Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife. 5:e17473.

Seifert, G. J. & Roberts, K. 2007. The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 58:137-61.

Serpe, M. D. & Nothnagel, E. A. 1995. Fractionation and structural characterization of arabinogalactan-proteins from the cell wall of rose cells. Plant Physiol. 109:1007-16.

Showalter, A. M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:9-23.

Showalter, A. M. 2001. Arabinogalactan-proteins: structure, expression and function. Cell. Mol. Life Sci. CMLS 58:1399-417.

Showalter, A. M., Keppler, B., Lichtenberg, J., Gu, D. & Welch, L. R. 2010. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 153:485-513.

Siddhanta, A. K., Goswami, A. M., Ramavat, B. K., Mody, K. H. & Mairh, O. P. 2001. Water soluble polysaccharides of marine algal species of Ulva (Ulvales, Chlorophyta) of Indian waters. Indian J. Mar. Sci. 30:166-72.

Sørensen, I., Pettolino, F. A., Bacic, A., Ralph, J., Lu, F., O’Neill, M. A., Fei, Z., Rose, J. K. C., Domozych, D. S. & Willats, W. G. T. 2011. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J. 68:201-11.

Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J. & Oertel, W. 2012. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48:1433-47.

Stanley, M. S., Perry, R. M. & Callow, J. A. 2005. Analysis of expressed sequence tags from the green alga Ulva linza (Chlorophyta). J. Phycol. 41:1219-26.

Staudacher, E. 2012. Methylation - an uncommon modification of glycans. Biol. Chem. 393:675-85.

Su, S. & Higashiyama, T. 2018. Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod. 31:67-75.

Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W. & Yusaf, T. 2018. An overview of marine macroalgae as bioresource. Renew. Sustain. Energy Rev. 91:165-79.

Suganya, T., Varman, M., Masjuki, H. H. & Renganathan, S. 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: abiorefinery approach. Renew. Sustain. Energy Rev. 55:909-41.

Tabarsa, M., You, S., Dabaghiam, E. H. & Surayot, U. 2018. Water-soluble polysaccharides from Ulva intestinalis: molecular properties, structural elucidation and immunomodulatory activities. J. Food Drug Anal. 26:599-608.

Tan, L., Eberhard, S., Pattathil, S., Warder, C., Glushka, J., Yuan, C., Hao, Z. et al. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270-87.

Tan, L., Leykam, J. F. & Kieliszewski, M. J. 2003. Glycosylation motifs that direct arabinogalactan addition to arabinogalactan-proteins. Plant Physiol. 132:1362-9.

Tang, X. C., He, Y. Q., Wang, Y. & Sun, M. X. 2006. The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. J. Exp. Bot. 57:2639-50.

Temple, H., Mortimer, J. C., Tryfona, T., Yu, X., Lopez-Hernandez, F., Sorieul, M., Anders, N. & Dupree, P. 2019. Two members of the DUF579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct 3:1-4.

Tryfona, T., Liang, H. C., Kotake, T., Tsumuraya, Y., Stephens, E. & Dupree, P. 2012. Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol. 160:653-66.

Van Hengel, A. J., Van Kammen, A. & De Vries, S. C. 2002. A relationship between seed development, arabinogalactan-proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol. Plant. 114:637-44.

van Holst, G. J. & Clarke, A. E. 1985. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Anal. Biochem. 148:446-50.

Vieira, H. H., Bagatini, I. L., Guinart, C. M. & Vieira, A. A. H. 2016. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31:155-65.

Wahlström, N., Edlund, U., Pavia, H., Toth, G., Jaworski, A., Pell, A. J., Choong, F. X., Shirani, H., Nilsson, K. P. R. & Richter-Dahlfors, A. 2020. Cellulose from the green macroalgae Ulva lactuca: isolation, characterization, optotracing, and production of cellulose nanofibrils. Cellulose 27:3707-25.

Westermeier, R. 2016. Protein detection. In Westermeier, R. [Ed.] Electrophoresis in Practice. John Wiley & Sons Ltd, Chichester, UK, pp. 131-64.

Wichard, T., Charrier, B., Mineur, F., Bothwell, J. H., Clerck, O. D. & Coates, J. C. 2015. The green seaweed Ulva: a model system to study morphogenesis. Front. Plant Sci. 6:72.

Wijesekara, I., Lang, M., Marty, C., Gemin, M. P., Boulho, R., Douzenel, P., Wickramasinghe, I., Bedoux, G. & Bourgougnon, N. 2017. Different extraction procedures and analysis of protein from Ulva sp. in Brittany, France. J. Appl. Phycol. 29:2503-11.

Willför, S., Pranovich, A., Tamminen, T., Puls, J., Laine, C., Suurnäkki, A., Saake, B., Uotila, K., Simolin, H., Hemming, J. & Holmbom, B. 2009. Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides-a comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind. Crops Prod. 29:571-80.

Xu, J., Yue, R. Q., Liu, J., Ho, H. M., Yi, T., Chen, H. B. & Han, Q. B. 2014. Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. Int. J. Biol. Macromol. 67:205-9.

Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C. & Attia, H. 2013. Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocolloids 31:375-82.

Yariv, J., Rapport, M. M. & Graf, L. 1962. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem. J. 85:383-8.

Yates, E. A., Valdor, J. F., Haslam, S. M., Morris, H. R., Dell, A., Mackie, W. & Knox, J. P. 1996. Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131-9.

Zhao, Z. D., Tan, L., Showalter, A. M., Lamport, D. T. A. & Kieliszewski, M. J. 2002. Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. Plant J. 31:431-44.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...