Cancer stem cells from human glioblastoma resemble but do not mimic original tumors after in vitro passaging in serum-free media
Language English Country United States Media print
Document type Journal Article
PubMed
27589567
PubMed Central
PMC5323200
DOI
10.18632/oncotarget.11676
PII: 11676
Knihovny.cz E-resources
- Keywords
- cancer stem cells, drug discovery, genetic alterations, glioblastoma, primary cell culture,
- MeSH
- Apoptosis MeSH
- Cell Culture Techniques methods MeSH
- Glioblastoma drug therapy metabolism pathology MeSH
- Culture Media, Serum-Free pharmacology MeSH
- Humans MeSH
- Mice, Inbred BALB C MeSH
- Mice, Nude MeSH
- Mice MeSH
- Biomarkers, Tumor metabolism MeSH
- Tumor Cells, Cultured MeSH
- Neoplastic Stem Cells drug effects metabolism pathology MeSH
- Brain Neoplasms drug therapy metabolism pathology MeSH
- Prognosis MeSH
- Cell Proliferation MeSH
- Antineoplastic Agents pharmacology MeSH
- In Vitro Techniques MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Culture Media, Serum-Free MeSH
- Biomarkers, Tumor MeSH
- Antineoplastic Agents MeSH
Human gliomas harbour cancer stem cells (CSCs) that evolve along the course of the disease, forming highly heterogeneous subpopulations within the tumour mass. These cells possess self-renewal properties and appear to contribute to tumour initiation, metastasis and resistance to therapy. CSC cultures isolated from surgical samples are considered the best preclinical in vitro model for primary human gliomas. However, it is not yet well characterized to which extent their biological and functional properties change during in vitro passaging in the serum-free culture conditions. Here, we demonstrate that our CSC-enriched cultures harboured from one to several CSC clones from the human glioma sample. When xenotransplanted into mouse brain, these cells generated tumours that reproduced at least three different dissemination patterns found in original tumours. Along the passages in culture, CSCs displayed increased expression of stem cell markers, different ratios of chromosomal instability events, and a varied response to drug treatment. Our findings highlight the need for better characterization of CSC-enriched cultures in the context of their evolution in vitro, in order to uncover their full potential as preclinical models in the studies aimed at identifying molecular biomarkers and developing new therapeutic approaches of human gliomas.
Centro Nacional de Biotecnología Madrid Spain
Division of Biopharmaceutics and Pharmacokinetics University of Helsinki Helsinki Finland
Fundación de Investigación HM Hospitales HM Hospitales Madrid Spain
Genetic and Genomic Unit Fundación Centro de Investigación Príncipe Felipe Valencia Spain
Instituto de Investigaciones Biomédicas CIBERER CSIC UAM Madrid Spain
Instituto Madrileño de Estudios Avanzados IMDEA Nanociencia Madrid Spain
Neuro Oncology Unit Instituto de Salud Carlos 3 UFIEC Madrid Spain
Neurosurgery Department Hospital Universitario la Fe de Valencia Valencia Spain
See more in PubMed
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. PubMed PMC
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The epidemiology of glioma in adults: A state of the science review. Neuro Oncol. 2014;16:896–913. PubMed PMC
Stupp R1, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96. PubMed
Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: Standard of care and future directions. J Clin Oncol. 2007;25:4127–36. PubMed
Darefsky AS, King JT, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: A population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer. 2012;118:2163–72. PubMed PMC
Sant M, Minicozzi P, Lagorio S, Børge Johannesen T, Marcos-Gragera R, Francisci S. Survival of European patients with central nervous system tumors. Int J Cancer. 2012;131:173–85. PubMed
Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-sloan JS. N E U RO - O N CO LO GY CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. 2013:iil–56. PubMed PMC
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Res. 2003;63:5821–8. PubMed
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. PubMed
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206. PubMed
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, Vitis S De, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma. Cancer Res. 2004;64:7011–21. PubMed
Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C, Tavaré S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110:4009–14. PubMed PMC
Piccirillo SGM, Combi R, Cajola L, Patrizi a, Redaelli S, Bentivegna a, Baronchelli S, Maira G, Pollo B, Mangiola a, DiMeco F, Dalprà L, Vescovi a L. Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene. 2009;28:1807–11. PubMed
Joo KM, Kim J, Jin J, Kim M, Seol HJ, Muradov J, Yang H, Choi Y La, Park WY, Kong DS, Lee J Il, Ko YH, Woo HG, et al. Patient-Specific Orthotopic Glioblastoma Xenograft Models Recapitulate the Histopathology and Biology of Human Glioblastomas In Situ. Cell Rep. 2013;3:260–73. PubMed
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403. PubMed
Li A, Walling J, Kotliarov Y, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA. Genomic Changes and Gene Expression Profiles Reveal That Established Glioma Cell Lines Are Poorly Representative of Primary Human Gliomas. Molecular Cancer Research. 2008;6:21–31. PubMed
Günther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008;27:2897–909. PubMed
Marziali G, Signore M, Buccarelli M, Grande S, Palma A, Biffoni M, Rosi A, D'Alessandris QG, Martini M, Larocca LM, De Maria R, Pallini R, Ricci-Vitiani L. Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome. Sci Rep. 2016;6:1–13. PubMed PMC
Wakimoto H, Mohapatra G, Kanai R, Curry WT, Yip S, Nitta M, Patel AP, Barnard ZR, Stemmer-Rachamimov AO, Louis DN, Martuza RL, Rabkin SD. Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro Oncol. 2012;14:132–44. PubMed PMC
Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73. PubMed
Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'Kelly M, et al. Cancer Cell. Vol. 17. Elsevier Ltd; 2010. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1; pp. 98–110. PubMed PMC
Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, Segerman A, Wicher G, Niklasson M, Baskaran S, Sreedharan S, Everlien I, Kastemar M, et al. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes. EBioMedicine. 2015;2:1351–63. PubMed PMC
Ayuso-Sacido A., Roy N.S, Schwartz T.H, Greenfield J.P, Boockvar J.A. Long-term expansion of adult human brain subventricular zone precursors. Neurosurgery. 2008;62:223–229. PubMed
Brennan C.W, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–477. PubMed PMC
Warburg O, P K., Negelein E. üeber den Stoffwechsel der Tumoren. Biochem Z. 1924:319–344.
Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, Popescu R, Della Donna L, Evers P, Dekmezian C, Reue K, Christofk H, Mischel PS, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A. 2011;108:16062–7. PubMed PMC
Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP. CD133+ and CD133- glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5. PubMed
Meyer M, Reimand J, Lan X, Head R, Zhu X, Kushida M, Bayani J, Pressey JC, Lionel AC, Clarke ID, Cusimano M, Squire JA, Scherer SW, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112:851–6. PubMed PMC
Nevo I, Woolard K, Cam M, Li A, Webster JD, Kotliarov Y, Kim HS, Ahn S, Walling J, Kotliarova S, Belova G, Song H, Bailey R, et al. Identification of molecular pathways facilitating Glioma cell invasion in situ. PLoS One. 2014:9. PubMed PMC
Xie Y, Bergström T, Jiang Y, Johansson P, Marinescu VD, Lindberg N, Segerman A, Wicher G, Niklasson M, Baskaran S, Sreedharan S, Everlien I, Kastemar M, et al. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes. EBioMedicine. 2015;2:1351–63. PubMed PMC