Epidemiological survey of enteric viruses in wild boars in the Czech Republic: First evidence of close relationship between wild boar and human rotavirus A strains
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
27599927
PubMed Central
PMC7117292
DOI
10.1016/j.vetmic.2016.08.003
PII: S0378-1135(16)30208-5
Knihovny.cz E-resources
- Keywords
- Enteric viruses, Phylogeny, RT-PCR, Rotavirus A, Wild boar,
- MeSH
- Antigens, Viral genetics MeSH
- Coronaviridae genetics isolation & purification MeSH
- Feces virology MeSH
- Phylogeny MeSH
- Genotype MeSH
- Coronaviridae Infections epidemiology veterinary virology MeSH
- Humans MeSH
- Swine Diseases epidemiology virology MeSH
- Picornaviridae genetics isolation & purification MeSH
- Picornaviridae Infections epidemiology veterinary virology MeSH
- Swine MeSH
- Rotavirus Infections epidemiology veterinary virology MeSH
- Rotavirus genetics isolation & purification MeSH
- Sus scrofa MeSH
- Capsid Proteins genetics MeSH
- Disease Reservoirs MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Antigens, Viral MeSH
- Capsid Proteins MeSH
- VP4 protein, Rotavirus MeSH Browser
- VP6 protein, Rotavirus MeSH Browser
- VP7 protein, Rotavirus MeSH Browser
Population of wild boar is increasing in the whole Europe, the animals migrate close to human habitats which greatly increases the possibility of natural transmission between domestic animals or humans and wild boars. The aim of the study was to estimate in population of free-living wild boar in the Czech Republic the prevalence of enteric viral pathogens, namely rotavirus groups A and C (RVA and RVC), porcine reproductive and respiratory syndrome virus (PRRSV), and members of family Coronaviridae (transmissible gastroenteritis virus - TGEV, porcine epidemic diarrhea virus - PEDV, porcine respiratory coronavirus - PRCV, and porcine hemagglutination encephalomyelitis virus - PHEV) and Picornaviridae,(teschovirus A - PTV, sapelovirus A - PSV, and enterovirus G - EV-G). In our study, stool samples from 203 wild boars culled during hunting season 2014-2015 (from October to January) were examined by RT-PCR. RVA was detected in 2.5% of tested samples. Nucleotide analysis of VP7, VP4, and VP6 genes revealed that four RVA strains belong to G4P[25]I1, G4P[6]I5, G11P[13]I5, and G5P[13]I5 genotypes and phylogenetic analysis suggested close relation to porcine and human RVAs. The prevalence of RVC in wild boar population reached 12.8%, PTV was detected in 20.2%, PSV in 8.9%, and EV-G in 2.5% of samples. During our study no PRRSV or coronaviruses were detected. Our study provides the first evidence of RVC prevalence in wild boars and indicates that wild boars might contribute to the genetic variability of RVA and also serve as an important reservoir of other enteric viruses.
See more in PubMed
Amimo J.O., Vlasova A.N., Saif L.J. Prevalence and genetic heterogeneity of porcine group C rotaviruses in nursing and weaned piglets in Ohio, USA and identification of a potential new VP4 genotype. Vet. Microbiol. 2013;164:27–38. PubMed PMC
Cano-Goméz C., García-Casado M., Soriguer R., Palero F., Jiménez-Clavero M.A. Teschoviruses and sapeloviruses in faecal samples from wild boar in Spain. Vet. Microbiol. 2013;165:115–122. PubMed
Cano-Manuel F.J., López-Olvera J., Fandos P., Soriguer R.C., Pérez J.M., Granados J.E. Long-term monitoring of 10 selected pathogens in wild boar (Sus scrofa) in Sierra Nevada National Park, southern Spain. Vet. Microbiol. 2014;174:148–154. PubMed
Fong T.-T., Lipp E.K. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 2005;69:357–371. PubMed PMC
Gabbay Y.B., Borges A.A., Oliveira D.S., Linhares A.C., Mascarenhas J.D., Barardi C.R., Simões C.M., Wang Y., Glass R.I., Jiang B. Evidence for zoonotic transmission of group C rotaviruses among children in Belém, Brazil. J. Med. Virol. 2008;80:1666–1674. PubMed
Ghosh S., Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol. 2011;6:1049–1065. PubMed
Gonzáles-Barrio D., Martín-Hernando M.P., Ruiz-Fons F. Shedding patterns of endemic Eurasian wild boar (Sus scrofa) pathogens. Res. Vet. Sci. 2015;102:206–211. PubMed
Hälli O., Ala-Kurikka E., Nokireki T., Skrypczak T., Raunio-Saarnisto M., Peltoniemi O.A., Heinonen M. Prevalence and risk factors associated with viral and bacterial pathogens in farmed European wild boar. Vet. J. 2012;194:98–101. PubMed PMC
Jeong Y.J., Park S.I., Hosmillo M., Shin D.J., Chun Y.H., Kim H.J., Kwon H.J., Kang S.Y., Woo S.K., Park S.J., Kim G.Y., Kang M.I., Cho K.O. Detection and molecular characterization of porcine group C rotaviruses in South Korea. Vet. Microbiol. 2009;138:217–224. PubMed PMC
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. PubMed
Knowles N.J. Porcine enteric picornaviruses. In: Straw B.E., Zimmermann J.J., D́Allaire S.D., Taylor D.J., editors. Diseases of Swine. ninth ed. Blackwell Publishing Inc.; Ames: 2006. pp. 337–345.
Maes P., Matthijnssens J., Rahman M., Van Ranst M. RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol. 2009;9:238. PubMed PMC
Malenovska H. Virus quantitation by transmission electron microscopy TCID50, and the role of timing virus harvesting: a case study of three animal viruses. J. Virol. Methods. 2013;191:136–140. PubMed
Martella V., Bányai K., Lorusso E., Decaro N., Bellacicco A., Desario C., Corrente M., Greco G., Moschidou P., Tempesta M., Arista S., Ciarlet M., Lavazza A., Buonavoglia C. Prevalence of group C rotaviruses in weaning and post-weaning pigs with enteritis. Vet. Microbiol. 2007;123:26–33. PubMed
Massei G., Kindberg J., Licoppe A., Gačić D., Šprem N., Kamler J., Baubet E., Hohmann U., Monaco A., Ozolinš J., Cellina S., Podgórski T., Fronseca C., Markov N., Pokorny B., Rosell C., Náhlik A. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015;71:492–500. PubMed
Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Banyai K., Estes M.K., Gentsch J.R., Iturriza-Gomara M., Kirkwood C.D., Martella V., Mertens P.P., Nakagomi O., Patton J.T., Ruggeri F.M., Saif L.J., Santos N., Steyer A., Taniguchi K., Desselberger U., Van Ranst M. Recommendations for the calssification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008;153:1621–1629. PubMed PMC
Matthijnssens J., Rahman M., Ciarlet M., Zeller M., Heylen E., Nakagomi T., Uchida R., Hassan Z., Azim T., Nakagomi O., Van Ranst M. Reassortment of human rotavirus gene segments into G11 rotavirus strains. Emerg. Infect. Dis. 2010;16:625–630. PubMed PMC
McGregor G.F., Gottschalk M., Godson D.L., Wilkins W., Bollinger T.K. Disease risk associated with free-ranging wild boar in Saskatchewan. Can. Vet. J. 2015;56:838–844. PubMed PMC
Meier R.K., Ruiz-Fons F., Ryser-Degiorgis M.-P. A picture of trends in Aujeszky’s disease virus exposure in wild boar in the Swiss and European contexts. BMC Vet. Res. 2015;11:277. PubMed PMC
Meng X.-J., Lindsay D.S., Sriranganathan N. Wild boars as sources for infectious diseases in livestock and human. Phil. Trans. R. Soc. B. 2009;364:2697–2707. PubMed PMC
Moenning V. The control of classical swine fever in wild boar. Front. Microbiol. 2015;6:1211. PubMed PMC
Mouchantat S., Wernike K., Lutz W., Hoffmann B., Ulrich R.G., Börner K., Wittstatt U., Beer M. A broad spectrum screening of Schmallenberg virus antibodies in wildlife animals in Germany. Vet. Res. 2015;46:99. doi: 10.1186/s13567-015-0232-x. PubMed DOI PMC
Moutelíková R., Prodělalová J., Dufková L. Prevalence study and phylogenetic analysis of group C porcine rotavirus in the Czech Republic revealed a high level of VP6 gene heterogeneity within porcine cluster I1. Arch. Virol. 2014;159:1163–1167. PubMed
Mullick S., Mukherjee A., Ghosh S., Pazhani G.P., Sur D., Manna B., Nataro J.P., Levine M.M., Ramamurthy T., Chawla-Sarkar M. Genomic analysis of human rotavirus strains G6P[14] and G11P[25] isolated from Kolkata in 2009 reveals interspecies transmission and complex reassortment events. Infect. Genet. Evol. 2013;14:15–21. PubMed
Okadera K., Abe M., Ito N., Morikawa S., Yamasaki A., Masatani T., Nakagava K., Yamaoka S., Sugyiama M. Evidence of natural transmission of group A rotavirus between domestic pigs and wild boars (Sus scrofa) in Japan. Infect. Genet. Evol. 2013;20:54–60. PubMed
Papp H., Borzák R., Farkas S., Kisfali P., Lengyel G., Molnár P., Melegh B., Matthijnssens J., Martella V., Bányai K. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period. Infect. Genet. Evol. 2013;19:71–80. PubMed
Podgórski T., Lusseau D., Scandura M., Sönnichsen L., Jędrzejewska B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One. 2014;9:e99875. doi: 10.1371/journal.pone.0099875. PubMed DOI PMC
Prodělalová J. The survey of porcine teschoviruses, sapeloviruses and enteroviruses B infecting domestic pigs and wild boars in the Czech Republic between 2005 and 2011. Infect. Genet. Evol. 2012;12:1447–1451. PubMed
Ramírez E., Moreno V., Díaz N., Osorio F., Ruiz A., Neira V., Quezada M. Evaluation of the pathogenicity and transmissibility of a Chilean isolate of porcine reproductive and respiratory syndrome virus. Transbound. Emerg. Dis. 2008;55:115–124. PubMed
Reiner G., Fresen C., Bronnert S., Willems H. Porcine reproductive and respiratory syndrome virus (PRRSV) infection in wild boars. Vet. Microbiol. 2009;136:250–258. PubMed
Schlosser J., Vina-Rodriguez A., Fast C., Groschup M.H. Chronically infected wild boar can transmit genotype 3 hepatitis virus to domestic pigs. Vet. Microbiol. 2015;180:15–21. PubMed
Škrkal J., Rulík P., Fantínová K., Mihalík J., Timková J. Radiocaesium levels in game in the Czech Republic. J. Environ. Rad. 2015;139:18–23. PubMed
Sliz I., Vlasakova M., Jackova A., Vilcek S. Characterization of porcine parvovirus type 3 and porcine circovirus type 2 in wild boars (Sus scrofa) in Slovakia. J. Wildl. Dis. 2015;51:703–711. PubMed
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. PubMed PMC
Touloudi A., Valiakos G., Athanasiou L.V., Birtsas P., Giannakopulous A., Papaspyropoulos K., Kalaitzis C., Sokos C., Tsokana C.N., Spyrou V., Petrovska L., Billinis C. A serosurvey for selected pathogens in Greek European wild boar. Vet. Rec. Open. 2015;2:e000077. doi: 10.1136/vetreco-2014-000077. PubMed DOI PMC
Vengust G., Valenčak Z., Bidovec A. A serological survey of selected pathogens in wild boar in Slovenia. J. Vet. Med. B. 2006;53:24–27. PubMed PMC
Vilcek S., Molnar L., Vlasakova M., Jackova A. The first detection of PRRSV in wild boars in Slovakia. Berl. Münch. Tierärztl. Wochenschr. 2015;128:31–35. PubMed
Woźniakowski G., Kozak E., Kowalczyk A., Łyjak M., Pomorska-Mól M., Niemczuk K., Pejsak Z. Current status of African swine fever virus in a population of wild boar in eastern Poland 2014–2015. Arch. Virol. 2015 doi: 10.1007/s00705-015-2650-5. PubMed DOI PMC
Zeller M., Heylen E., De Coster S., Van Ranst M., Matthijnssens J. Full genome characterization of a porcine-like human G9P [6] rotavirus strain isolated from an infant in Belgium. Infect. Genet. Evol. 2012;12:1492–1500. PubMed
Zhou X., Wang Y.H., Ghosh S., Tang W.F., Pang B.B., Liu M.Q., Peng J.S., Zhou D.J., Kobayashi N. Genomic characterization of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: evidence for interspecies transmission and reassortment events. Infect. Genet. Evol. 2015;33:55–71. PubMed