Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
Wellcome Trust - United Kingdom
MC_UU_12014/8
Medical Research Council - United Kingdom
PubMed
27621441
PubMed Central
PMC5047211
DOI
10.1073/pnas.1606587113
PII: 1606587113
Knihovny.cz E-zdroje
- Klíčová slova
- Desmodus, forecasting, sex bias, spatial dynamics, zoonotic disease,
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- Chiroptera virologie MeSH
- genom virový MeSH
- interakce hostitele a patogenu * MeSH
- mikrosatelitní repetice genetika MeSH
- roční období MeSH
- typy dědičnosti genetika MeSH
- virus vztekliny genetika MeSH
- vzteklina epidemiologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Peru epidemiologie MeSH
Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared completely isolated. In contrast, greater population connectivity in biparentally inherited nuclear microsatellites explained the historical limits of invasions, suggesting that dispersing male bats spread VBRV between genetically isolated female populations. Host nuclear DNA further indicated unanticipated gene flow through the Andes mountains connecting the VBRV-free Pacific coast to the VBRV-endemic Amazon rainforest. By combining Bayesian phylogeography with landscape resistance models, we projected invasion routes through northern Peru that were validated by real-time livestock rabies mortality data. The first outbreaks of VBRV on the Pacific coast of South America could occur by June 2020, which would have serious implications for agriculture, wildlife conservation, and human health. Our results show that combining host and pathogen genetic data can identify sex biases in pathogen spatial spread, which may be a widespread but underappreciated phenomenon, and demonstrate that genetic forecasting can aid preparedness for impending viral invasions.
Association for the Conservation and Development of Natural Resources Lima 41 Peru;
Instituto Nacional de Salud Ministry of Health of Peru Lima 11 Peru;
Medical Research Council University of Glasgow Centre for Virus Research Glasgow G61 1QH Scotland;
Odum School of Ecology University of Georgia Athens GA 30602;
Zobrazit více v PubMed
Plowright RK, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci. 2015;282(1798):20142124. PubMed PMC
Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331(6015):296–302. PubMed
Mazé-Guilmo E, Blanchet S, McCoy KD, Loot G. Host dispersal as the driver of parasite genetic structure: A paradigm lost? Ecol Lett. 2016;19(3):336–347. PubMed
Biek R, Drummond AJ, Poss M. A virus reveals population structure and recent demographic history of its carnivore host. Science. 2006;311(5760):538–541. PubMed
Turmelle AS, Kunz TH, Sorenson MD. A tale of two genomes: Contrasting patterns of phylogeographic structure in a widely distributed bat. Mol Ecol. 2011;20(2):357–375. PubMed
Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;17(9):2107–2121. PubMed
Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. Vampire bat rabies: Ecology, epidemiology and control. Viruses. 2014;6(5):1911–1928. PubMed PMC
World Health Organization WHO Expert Consultation on Rabies. Second report. World Health Organ Tech Rep Ser. 2013;982(982):1–139. PubMed
Linhart SB, Mitchell GC, Crespo RF. Control of vampire bats by topical application of an anticoagulent (chlorophacinone) Bol La Of Sanit Panam. 1972;73(2):31–38. PubMed
Blackwood JC, Streicker DG, Altizer S, Rohani P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci USA. 2013;110(51):20837–20842. PubMed PMC
Benavides JA, Valderrama W, Streicker DG. Spatial expansions and travelling waves of rabies in vampire bats. Proc R Soc B Biol Sci. 2016;283(1832)
Martins FM, Templeton AR, Pavan ACO, Kohlbach BC, Morgante JS. Phylogeography of the common vampire bat (Desmodus rotundus): Marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol. 2009;9(294):294. PubMed PMC
Romero-Nava C, León-Paniagua L, Ortega J. Microsatellites loci reveal heterozygosis and population structure in vampire bats (Desmodus rotundus) (Chiroptera: Phyllostomidae) of Mexico. Rev Biol Trop. 2014;62(2):659–669. PubMed
Condori-Condori RE, Streicker DG, Cabezas-Sanchez C, Velasco-Villa A. Enzootic and epizootic rabies associated with vampire bats, peru. Emerg Infect Dis. 2013;19(9):1463–1469. PubMed PMC
Torres C, et al. Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol Ecol. 2014;23(9):2340–2352. PubMed PMC
Loveridge AJ, Macdonald DW. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J Zool (Lond) 2001;253:101–111.
Craft ME, Volz E, Packer C, Meyers LA. Disease transmission in territorial populations: The small-world network of Serengeti lions. J R Soc Interface. 2011;8(59):776–786. PubMed PMC
Greenwood PJ. Mating systems, philopatry and dispersal in birds and mammals. Anim Behav. 1980;28(4):1140–1162.
Wilkinson GS. The social organization of the common vampire bat: II Mating system, genetic structure and relatedness. Behav Ecol Sociobiol. 1985;17:123–134.
Melnick DJ, Hoelzer GA. Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int J Primatol. 1992;13(4):379–393.
Goudet J, Perrin N, Waser P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol. 2002;11(6):1103–1114. PubMed
Moreno JA, Baer GM. Experimental rabies in the vampire bat. Am J Trop Med Hyg. 1980;29(2):254–259. PubMed
Lord RD. Seasonal reproduction of vampire bats and its relation to seasonality of bovine rabies. J Wildl Dis. 1992;28(2):292–294. PubMed
Nunn CL, Thrall PH, Stewart K, Harcourt AH. Emerging infectious diseases and animal social systems. Evol Ecol. 2008;22(4):519–543.
Navarro AM, Bustamante J, Sato A. Situación actual y control de la rabia en el Perú [Current status and control of rabies in Peru] Rev Peru Med Exp Salud Publica. 2007;24(1):46–50.
Quintana H, Pacheco V. Identificación y distribución de los murciélagos vampiros del Perú [Identification and distribution of vampire bats in Peru] Rev Peru Med Exp Salud Publica. 2007;24:81–88.
Streicker DG, et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science. 2010;329(5992):676–679. PubMed
Catenazzi A, Donnelly MA. Sea lion (Otaria flavescens) as host of the common vampire bat (Desmodus rotundus) Mar Ecol Prog Ser. 2008;360:285–289.
Fornes A, et al. Control of bovine rabies through vampire bat control. J Wildl Dis. 1974;10(4):310–316. PubMed
Pope LC, et al. Genetic evidence that culling increases badger movement: Implications for the spread of bovine tuberculosis. Mol Ecol. 2007;16(23):4919–4929. PubMed
Hafner MS, et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science. 1994;265(5175):1087–1090. PubMed
Zwickl DJ, Hills DM. 2006. Genetic algorithim approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation (University of Texas, Austin)
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–1973. PubMed PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. PubMed PMC
Baele G, et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29(9):2157–2167. PubMed PMC
Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27(8):1877–1885. PubMed PMC
Dellicour S, Rose R, Pybus OG. Explaining the geographic spread of emerging viruses: A new framework for comparing viral genetic information and environmental landscape data. BMC Bioinformatics. 2016;17(82):1–12. PubMed PMC
Paradis E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26(3):419–420. PubMed
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. PubMed PMC
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94. PubMed PMC
Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats
GENBANK
KU937964, KU938399, KU938400, KU938924