Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies

. 2016 Sep 27 ; 113 (39) : 10926-31. [epub] 20160912

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid27621441

Grantová podpora
Wellcome Trust - United Kingdom
MC_UU_12014/8 Medical Research Council - United Kingdom

Anticipating how epidemics will spread across landscapes requires understanding host dispersal events that are notoriously difficult to measure. Here, we contrast host and virus genetic signatures to resolve the spatiotemporal dynamics underlying geographic expansions of vampire bat rabies virus (VBRV) in Peru. Phylogenetic analysis revealed recent viral spread between populations that, according to extreme geographic structure in maternally inherited host mitochondrial DNA, appeared completely isolated. In contrast, greater population connectivity in biparentally inherited nuclear microsatellites explained the historical limits of invasions, suggesting that dispersing male bats spread VBRV between genetically isolated female populations. Host nuclear DNA further indicated unanticipated gene flow through the Andes mountains connecting the VBRV-free Pacific coast to the VBRV-endemic Amazon rainforest. By combining Bayesian phylogeography with landscape resistance models, we projected invasion routes through northern Peru that were validated by real-time livestock rabies mortality data. The first outbreaks of VBRV on the Pacific coast of South America could occur by June 2020, which would have serious implications for agriculture, wildlife conservation, and human health. Our results show that combining host and pathogen genetic data can identify sex biases in pathogen spatial spread, which may be a widespread but underappreciated phenomenon, and demonstrate that genetic forecasting can aid preparedness for impending viral invasions.

Zobrazit více v PubMed

Plowright RK, et al. Ecological dynamics of emerging bat virus spillover. Proc Biol Sci. 2015;282(1798):20142124. PubMed PMC

Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331(6015):296–302. PubMed

Mazé-Guilmo E, Blanchet S, McCoy KD, Loot G. Host dispersal as the driver of parasite genetic structure: A paradigm lost? Ecol Lett. 2016;19(3):336–347. PubMed

Biek R, Drummond AJ, Poss M. A virus reveals population structure and recent demographic history of its carnivore host. Science. 2006;311(5760):538–541. PubMed

Turmelle AS, Kunz TH, Sorenson MD. A tale of two genomes: Contrasting patterns of phylogeographic structure in a widely distributed bat. Mol Ecol. 2011;20(2):357–375. PubMed

Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;17(9):2107–2121. PubMed

Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. Vampire bat rabies: Ecology, epidemiology and control. Viruses. 2014;6(5):1911–1928. PubMed PMC

World Health Organization WHO Expert Consultation on Rabies. Second report. World Health Organ Tech Rep Ser. 2013;982(982):1–139. PubMed

Linhart SB, Mitchell GC, Crespo RF. Control of vampire bats by topical application of an anticoagulent (chlorophacinone) Bol La Of Sanit Panam. 1972;73(2):31–38. PubMed

Blackwood JC, Streicker DG, Altizer S, Rohani P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci USA. 2013;110(51):20837–20842. PubMed PMC

Benavides JA, Valderrama W, Streicker DG. Spatial expansions and travelling waves of rabies in vampire bats. Proc R Soc B Biol Sci. 2016;283(1832)

Martins FM, Templeton AR, Pavan ACO, Kohlbach BC, Morgante JS. Phylogeography of the common vampire bat (Desmodus rotundus): Marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol. 2009;9(294):294. PubMed PMC

Romero-Nava C, León-Paniagua L, Ortega J. Microsatellites loci reveal heterozygosis and population structure in vampire bats (Desmodus rotundus) (Chiroptera: Phyllostomidae) of Mexico. Rev Biol Trop. 2014;62(2):659–669. PubMed

Condori-Condori RE, Streicker DG, Cabezas-Sanchez C, Velasco-Villa A. Enzootic and epizootic rabies associated with vampire bats, peru. Emerg Infect Dis. 2013;19(9):1463–1469. PubMed PMC

Torres C, et al. Phylodynamics of vampire bat-transmitted rabies in Argentina. Mol Ecol. 2014;23(9):2340–2352. PubMed PMC

Loveridge AJ, Macdonald DW. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J Zool (Lond) 2001;253:101–111.

Craft ME, Volz E, Packer C, Meyers LA. Disease transmission in territorial populations: The small-world network of Serengeti lions. J R Soc Interface. 2011;8(59):776–786. PubMed PMC

Greenwood PJ. Mating systems, philopatry and dispersal in birds and mammals. Anim Behav. 1980;28(4):1140–1162.

Wilkinson GS. The social organization of the common vampire bat: II Mating system, genetic structure and relatedness. Behav Ecol Sociobiol. 1985;17:123–134.

Melnick DJ, Hoelzer GA. Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int J Primatol. 1992;13(4):379–393.

Goudet J, Perrin N, Waser P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol. 2002;11(6):1103–1114. PubMed

Moreno JA, Baer GM. Experimental rabies in the vampire bat. Am J Trop Med Hyg. 1980;29(2):254–259. PubMed

Lord RD. Seasonal reproduction of vampire bats and its relation to seasonality of bovine rabies. J Wildl Dis. 1992;28(2):292–294. PubMed

Nunn CL, Thrall PH, Stewart K, Harcourt AH. Emerging infectious diseases and animal social systems. Evol Ecol. 2008;22(4):519–543.

Navarro AM, Bustamante J, Sato A. Situación actual y control de la rabia en el Perú [Current status and control of rabies in Peru] Rev Peru Med Exp Salud Publica. 2007;24(1):46–50.

Quintana H, Pacheco V. Identificación y distribución de los murciélagos vampiros del Perú [Identification and distribution of vampire bats in Peru] Rev Peru Med Exp Salud Publica. 2007;24:81–88.

Streicker DG, et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science. 2010;329(5992):676–679. PubMed

Catenazzi A, Donnelly MA. Sea lion (Otaria flavescens) as host of the common vampire bat (Desmodus rotundus) Mar Ecol Prog Ser. 2008;360:285–289.

Fornes A, et al. Control of bovine rabies through vampire bat control. J Wildl Dis. 1974;10(4):310–316. PubMed

Pope LC, et al. Genetic evidence that culling increases badger movement: Implications for the spread of bovine tuberculosis. Mol Ecol. 2007;16(23):4919–4929. PubMed

Hafner MS, et al. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science. 1994;265(5175):1087–1090. PubMed

Zwickl DJ, Hills DM. 2006. Genetic algorithim approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation (University of Texas, Austin)

Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–1973. PubMed PMC

Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. PubMed PMC

Baele G, et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol. 2012;29(9):2157–2167. PubMed PMC

Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27(8):1877–1885. PubMed PMC

Dellicour S, Rose R, Pybus OG. Explaining the geographic spread of emerging viruses: A new framework for comparing viral genetic information and environmental landscape data. BMC Bioinformatics. 2016;17(82):1–12. PubMed PMC

Paradis E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26(3):419–420. PubMed

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. PubMed PMC

Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):94. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Active surveillance for antibodies confirms circulation of lyssaviruses in Palearctic bats

. 2020 Dec 10 ; 16 (1) : 482. [epub] 20201210

Zobrazit více v PubMed

GENBANK
KU937964, KU938399, KU938400, KU938924

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...