Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4
Language English Country Germany Media print-electronic
Document type Comparative Study, Journal Article
PubMed
27678410
DOI
10.1007/s00210-016-1304-9
PII: 10.1007/s00210-016-1304-9
Knihovny.cz E-resources
- Keywords
- Drug metabolism, Drug transporters, Enantiospecificity, PXR,
- MeSH
- ATP-Binding Cassette Sub-Family B Member 4 MeSH
- Cytochrome P-450 CYP3A genetics metabolism MeSH
- Isomerism MeSH
- Humans MeSH
- LLC-PK1 Cells MeSH
- RNA, Messenger genetics metabolism MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- ATP Binding Cassette Transporter, Subfamily B antagonists & inhibitors genetics metabolism MeSH
- Swine MeSH
- Pregnane X Receptor MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Enzymologic drug effects MeSH
- Receptors, Steroid agonists metabolism MeSH
- Sulfonamides chemistry pharmacology MeSH
- Tamsulosin MeSH
- Tolterodine Tartrate chemistry pharmacology MeSH
- Transfection MeSH
- Up-Regulation MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- ABCB1 protein, human MeSH Browser
- CYP3A4 protein, human MeSH Browser
- Cytochrome P-450 CYP3A MeSH
- cytochrome P450 3A4, mouse MeSH Browser
- RNA, Messenger MeSH
- multidrug resistance protein 3 MeSH Browser
- ATP Binding Cassette Transporter, Subfamily B MeSH
- Pregnane X Receptor MeSH
- Receptors, Steroid MeSH
- Sulfonamides MeSH
- Tamsulosin MeSH
- Tolterodine Tartrate MeSH
The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.
See more in PubMed
Eur Urol. 1996;29(2):129-44 PubMed
J Clin Invest. 1996 Jun 1;97(11):2517-24 PubMed
Urolithiasis. 2013 Oct;41(5):417-21 PubMed
Xenobiotica. 2008 Jul;38(7-8):709-24 PubMed
Br J Clin Pharmacol. 2004 May;57(5):652-6 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2006 Jan;372(4):291-9 PubMed
Lancet. 2000 Mar 25;355(9209):1085-7 PubMed
Br J Clin Pharmacol. 1999 Oct;48(4):564-72 PubMed
Life Sci. 1997;60(13-14):1129-36 PubMed
N Engl J Med. 2007 Jan 4;356(1):94-5 PubMed
Eur Urol. 2001 Jan;39 Suppl 2:38-41 PubMed
Drug Metab Dispos. 1998 Mar;26(3):240-5 PubMed
Biochem Pharmacol. 2005 Sep 15;70(6):949-58 PubMed
Br J Pharmacol. 2008 Feb;153(4):820-30 PubMed
Teratog Carcinog Mutagen. 1994;14(3):115-22 PubMed
PLoS Negl Trop Dis. 2012;6(12):e1951 PubMed
J Pharmacol Exp Ther. 2003 Apr;305(1):197-204 PubMed
N Engl J Med. 2004 Feb 19;350(8):786-99 PubMed
J Urol. 2016 Feb;195(2):385-90 PubMed
Lancet. 2000 May 27;355(9218):1912 PubMed
Biochem Pharmacol. 2012 Apr 15;83(8):1112-26 PubMed
World J Urol. 2002 Apr;19(6):390-396 PubMed
Biochem Pharmacol. 2007 May 15;73(10):1573-81 PubMed
Int J Urol. 1994 Sep;1(3):203-11 PubMed
Drug Saf. 1993 Feb;8(2):149-59 PubMed
Int Urogynecol J. 2011 Oct;22(10):1287-91 PubMed
Drug Metab Dispos. 1998 Apr;26(4):289-93 PubMed
Urology. 2000 Dec 4;56(6 Suppl 1):41-9 PubMed
BJU Int. 2000 Apr;85 Suppl 2:12-8 PubMed
Br J Clin Pharmacol. 2011 Aug;72(2):235-46 PubMed
Prostate. 1997 Sep 15;33(1):55-9 PubMed
Lancet Neurol. 2004 Jan;3(1):46-53 PubMed
Int J Clin Pharmacol Ther. 1997 Jul;35(7):287-95 PubMed
Clin Pharmacokinet. 2010 Mar;49(3):177-88 PubMed
Cancer Res. 1991 Aug 15;51(16):4226-33 PubMed
Biopharm Drug Dispos. 1999 Mar;20(2):91-9 PubMed
Br J Clin Pharmacol. 2011 Aug;72(2):247-56 PubMed
Chem Biol Interact. 2014 Feb 5;208:64-76 PubMed
Toxicol Sci. 2009 Jul;110(1):4-30 PubMed
J Biol Chem. 2001 May 4;276(18):14581-7 PubMed
Arzneimittelforschung. 1979;29(10):1640-2 PubMed
Drugs. 2002;62(1):135-67 PubMed
Nat Commun. 2015 Sep 03;6:8089 PubMed
Eur J Pharmacol. 2008 Jan 28;579(1-3):104-9 PubMed
Drugs. 1998 Jun;55(6):813-20; discussion 821-2 PubMed
Pharmacol Toxicol. 1997 Oct;81(4):169-72 PubMed
Clin Pharmacol Ther. 2007 May;81(5):719-28 PubMed
Xenobiotica. 1998 Oct;28(10):909-22 PubMed