Noninvasive assessment of cardiac output by brachial occlusion-cuff technique: comparison with the open-circuit acetylene washin method
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
PubMed
27765846
PubMed Central
PMC5206382
DOI
10.1152/japplphysiol.00981.2015
PII: japplphysiol.00981.2015
Knihovny.cz E-zdroje
- Klíčová slova
- brachial cuff, cardiac output, noninvasive, occlusion,
- MeSH
- acetylen farmakologie MeSH
- arteria brachialis účinky léků fyziologie MeSH
- cvičení fyziologie MeSH
- dospělí MeSH
- krevní tlak účinky léků fyziologie MeSH
- lidé MeSH
- minutový srdeční výdej účinky léků fyziologie MeSH
- odpočinek fyziologie MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acetylen MeSH
Cardiac output (CO) assessment as a basic hemodynamic parameter has been of interest in exercise physiology, cardiology, and anesthesiology. Noninvasive techniques available are technically challenging, and thus difficult to use outside of a clinical or laboratory setting. We propose a novel method of noninvasive CO assessment using a single, upper-arm cuff. The method uses the arterial pressure pulse wave signal acquired from the brachial artery during 20-s intervals of suprasystolic occlusion. This method was evaluated in a cohort of 12 healthy individuals (age, 27.7 ± 5.4 yr, 50% men) and compared with an established method for noninvasive CO assessment, the open-circuit acetylene method (OpCirc) at rest, and during low- to moderate-intensity exercise. CO increased from rest to exercise (rest, 7.4 ± 0.8 vs. 7.2 ± 0.8; low, 9.8 ± 1.8 vs. 9.9 ± 2.0; moderate, 14.1 ± 2.8 vs. 14.8 ± 3.2 l/min) as assessed by the cuff-occlusion and OpCirc techniques, respectively. The average error of experimental technique compared with OpCirc was -0.25 ± 1.02 l/min, Pearson's correlation coefficient of 0.96 (rest + exercise), and 0.21 ± 0.42 l/min with Pearson's correlation coefficient of 0.87 (rest only). Bland-Altman analysis demonstrated good agreement between methods (within 95% boundaries); the reproducibility coefficient (RPC) = 0.84 l/min with R2 = 0.75 at rest and RPC = 2 l/min with R2 = 0.92 at rest and during exercise, respectively. In comparison with an established method to quantify CO, the cuff-occlusion method provides similar measures at rest and with light to moderate exercise. Thus, we believe this method has the potential to be used as a new, noninvasive method for assessing CO during exercise.
Zobrazit více v PubMed
Altman DG, Bland JM. Measurement in medicine : the analysis of method comparison studies. Statistician 32: 307–317, 1983. doi:10.2307/2987937. DOI
American College of Sports Medicine ACSM Guidelines for Exercise Testing and Prescription(8th ed). Indianapolis, IN: ACSM, 2010.
Angel K, Provan SA, Mowinckel P, Seljeflot I, Kvien TK, Atar D. The L-arginine/asymmetric dimethylarginine ratio is improved by anti-tumor necrosis factor-α therapy in inflammatory arthropathies. Associations with aortic stiffness. Atherosclerosis 225: 160–165, 2012. doi:10.1016/j.atherosclerosis.2012.08.033. PubMed DOI
Arai T, Lee K, Cohen RJ. Cardiac output and stroke volume estimation using a hybrid of three Windkessel models. Conf Proc IEEE Eng Med Biol Soc 2010: 4971–4974, 2010. doi:10.1109/IEMBS.2010.5627225. PubMed DOI
Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, Cziraki A, Nickering G, Mengden T. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens 26: 523–528, 2008. doi:10.1097/HJH.0b013e3282f314f7. PubMed DOI
Beck KC, Johnson BD, Olson TP, Wilson TA. Ventilation-perfusion distribution in normal subjects. J Appl Physiol (1985) 113: 872–877, 2012. doi:10.1152/japplphysiol.00163.2012. PubMed DOI PMC
Beck KC, Randolph LN, Bailey KR, Wood CM, Snyder EM, Johnson BD. Relationship between cardiac output and oxygen consumption during upright cycle exercise in healthy humans. J Appl Physiol (1985) 101: 1474–1480, 2006. doi:10.1152/japplphysiol.00224.2006. PubMed DOI
Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 8: 135–160, 1999. doi:10.1191/096228099673819272. PubMed DOI
Bourgeois MJ, Gilbert BK, Von Bernuth G, Wood EH. Continuous determination of beat to beat stroke volume from aortic pressure pulses in the dog. Circ Res 39: 15–24, 1976. doi:10.1161/01.RES.39.1.15. PubMed DOI
Bronzino JD. Biomedical Engineering Fundamentals (3rd ed.). Boca Raton, FL: CRC Press, 2006.
Collier CR. Determination of mixed venous CO2 tensions by rebreathing. J Appl Physiol 9: 25–29, 1956. PubMed
D’Alto M, Romeo E, Argiento P, D’Andrea A, Vanderpool R, Correra A, Bossone E, Sarubbi B, Calabrò R, Russo MG, Naeije R. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol 168: 4058–4062, 2013. doi:10.1016/j.ijcard.2013.07.005. PubMed DOI
Fabian V, Havlik J, Dvorak J, Kremen V, Sajgalik P, Bellamy V, Schirger JA, Sovka P, Johnson BD. Differences in mean arterial pressure of young and elderly people measured by oscilometry during inflation and deflation of the arm cuff. Biomed Tech (Berl) /j/bmte.ahead-of-print/bmt-2015-0098/bmt-2015-0098.xml, 2016. doi:10.1515/bmt-2015-0098. PubMed DOI
Fares WH, Blanchard SK, Stouffer GA, Chang PP, Rosamond WD, Ford HJ, Aris RM. Thermodilution and Fick cardiac outputs differ: impact on pulmonary hypertension evaluation. Can Respir J 19: 261–266, 2012. doi:10.1155/2012/261793. PubMed DOI PMC
Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. Q J Exp Physiol Cogn Med Sci 39: 153–164, 1954. PubMed
Fick A. Über die Messung des Blutquantums in den Hertzventrikeln. Verhandl Phys Med Ges Würzburg 2: XVI, 1870.
Hametner B, Wassertheurer S, Kropf J, Mayer C, Holzinger A, Eber B, Weber T. Wave reflection quantification based on pressure waveforms alone–methods, comparison, and clinical covariates. Comput Methods Programs Biomed 109: 250–259, 2013. doi:10.1016/j.cmpb.2012.10.005. PubMed DOI
Havlik J, Dvorak J, Fabian V. Design and realization of hardware for measurement of hemodynamic parameters. In: World Congress on Medical Physics and Biomedical Engineering May 26–31, 2012, Beijing, China, IFMBE Proceedings, edited by Long M. Heidelberg: Springer, 2012, p. 1420–1423.
Herd JA, Leclair NR, Simon W. Arterial pressure pulse contours during hemorrhage in anesthetized dogs. J Appl Physiol 21: 1864–1868, 1966. PubMed
Hidvégi EV, Illyés M, Benczúr B, Böcskei RM, Rátgéber L, Lenkey Z, Molnár FT, Cziráki A. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hypertens 30: 2314–2321, 2012. doi:10.1097/HJH.0b013e328359562c. PubMed DOI
Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, Cziráki A. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens 28: 2068–2075, 2010. doi:10.1097/HJH.0b013e32833c8a1a. PubMed DOI
Imholz BP, Langewouters GJ, van Montfrans GA, Parati G, van Goudoever J, Wesseling KH, Wieling W, Mancia G. Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording. Hypertension 21: 65–73, 1993. doi:10.1161/01.HYP.21.1.65. PubMed DOI
Jarvis SS, Levine BD, Prisk GK, Shykoff BE, Elliott AR, Rosow E, Blomqvist CG, Pawelczyk JA. Simultaneous determination of the accuracy and precision of closed-circuit cardiac output rebreathing techniques. J Appl Physiol (1985) 103: 867–874, 2007. doi:10.1152/japplphysiol.01106.2006. PubMed DOI
Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens 27: 2186–2191, 2009. doi:10.1097/HJH.0b013e32833057e8. PubMed DOI
Johnson BD, Beck KC, Proctor DN, Miller J, Dietz NM, Joyner MJ. Cardiac output during exercise by the open circuit acetylene washin method: comparison with direct Fick. J Appl Physiol (1985) 88: 1650–1658, 2000. PubMed
Jones WB, Hefner LL, Bancroft WH Jr, Klip W. Velocity of blood flow and stroke volume obtained from the pressure pulse. J Clin Invest 38: 2087–2090, 1959. doi:10.1172/JCI103986. PubMed DOI PMC
Kim CS, Fazeli N, McMurtry MS, Finegan BA, Hahn JO. Quantification of wave reflection using peripheral blood pressure waveforms. IEEE J Biomed Health Inform 19: 309–316, 2015. doi:10.1109/JBHI.2014.2307273. PubMed DOI
Lal SK, Henderson RJ, Cejnar M, Hart MG, Hunyor SN. Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. Hypertension 26: 307–314, 1995. doi:10.1161/01.HYP.26.2.307. PubMed DOI
Laskey WK, Kussmaul WG. Arterial wave reflection in heart failure. Circulation 75: 711–722, 1987. doi:10.1161/01.CIR.75.4.711. PubMed DOI
Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72: 1257–1269, 1985. doi:10.1161/01.CIR.72.6.1257. PubMed DOI
Levy RJ, Chiavacci RM, Nicolson SC, Rome JJ, Lin RJ, Helfaer MA, Nadkarni VM. An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth Analg 99: 1642–1647, 2004. doi:10.1213/01.ANE.0000136952.85278.99. PubMed DOI
Liljestrand G, Zander E. Vergleichen die bestimmungen des minutenvolumens des herzens beim menschen mittels der stichoxydulmethode und durch blutdruckmessung. Ztschr ges exper med. 59: 105–122, 1928.
Linton NW, Linton RA. Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86: 486–496, 2001. doi:10.1093/bja/86.4.486. PubMed DOI
London GM, Guerin AP. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138: 220–224, 1999. doi:10.1016/S0002-8703(99)70313-3. PubMed DOI
Mackensen GB. Non-Invasive Cardiac Output Monitoring: Ready For Prime-Time. San Francisco, CA: International Anesthesia Research Society, 2012.
Maeda M, Yokota M, Iwase M, Miyahara T, Hayashi H, Sotobata I. Accuracy of cardiac output measured by continuous wave Doppler echocardiography during dynamic exercise testing in the supine position in patients with coronary artery disease. J Am Coll Cardiol 13: 76–83, 1989. doi:10.1016/0735-1097(89)90552-4. PubMed DOI
Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart 89: 1104–1109, 2003. doi:10.1136/heart.89.9.1104. PubMed DOI PMC
Mueller HS, Chatterjee K, Davis KB, Fifer MA, Franklin C, Greenberg MA, Labovitz AJ, Shah PK, Tuman KJ, Weil MH, Weintraub WS; American College of Cardiology . ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. J Am Coll Cardiol 32: 840–864, 1998. doi:10.1016/S0735-1097(98)00327-1. PubMed DOI
Mukkamala R, Reisner AT, Hojman HM, Mark RG, Cohen RJ. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis. IEEE Trans Biomed Eng 53: 459–467, 2006. doi:10.1109/TBME.2005.869780. PubMed DOI
Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth 40: 142–153, 1993. doi:10.1007/BF03011312. PubMed DOI
Opie LH. Heart physiology from cell to circulation. Philadelphia, PA: Lippincott Williams & Wilkins, 2004.
Penáz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res 41: 5–10, 1992. PubMed
Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse. Hypertension 51: 188–195, 2008. doi:10.1161/HYPERTENSIONAHA.107.092676. PubMed DOI
Rezai M-R, Goudot G, Winters C, Finn JD, Wu FC, Cruickshank JK. Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the Arteriograph and Omron HEM-9000. Hypertens Res 34: 1046–1051, 2011. doi:10.1038/hr.2011.75. PubMed DOI
Sun JX, Reisner AT, Saeed M, Heldt T, Mark RG. The cardiac output from blood pressure algorithms trial. Crit Care Med 37: 72–80, 2009. doi:10.1097/CCM.0b013e3181930174. PubMed DOI PMC
Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26: 267–278, 2012. doi:10.1007/s10877-012-9375-8. PubMed DOI PMC
van de Vosse FN, Stergiopulos N. Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43: 467–499, 2011. doi:10.1146/annurev-fluid-122109-160730. DOI
Verdouw PD, Beaune J, Roelandt J, Hugenholtz PG. Stroke volume from central aortic pressure? A critical assessment of the various formulae as to their clinical value. Basic Res Cardiol 70: 377–389, 1975. doi:10.1007/BF01914334. PubMed DOI
Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol (1985) 74: 2566–2573, 1993. PubMed
Wesseling KH, Purschke R, Smith NT, Wüst HJ, de Wit B, Weber HA. A computer module for the continuous monitoring of cardiac output in the operating theatre and the ICU. Acta Anaesthesiol Belg 27, Suppl: 327–341, 1976. PubMed
Zhang J, Critchley LA, Huang L. Five algorithms that calculate cardiac output from the arterial waveform: a comparison with Doppler ultrasound. Br J Anaesth 115: 392–402, 2015. doi:10.1093/bja/aev254. PubMed DOI
Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis