Noninvasive assessment of cardiac output by brachial occlusion-cuff technique: comparison with the open-circuit acetylene washin method

. 2016 Dec 01 ; 121 (6) : 1319-1325. [epub] 20161020

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27765846
Odkazy

PubMed 27765846
PubMed Central PMC5206382
DOI 10.1152/japplphysiol.00981.2015
PII: japplphysiol.00981.2015
Knihovny.cz E-zdroje

Cardiac output (CO) assessment as a basic hemodynamic parameter has been of interest in exercise physiology, cardiology, and anesthesiology. Noninvasive techniques available are technically challenging, and thus difficult to use outside of a clinical or laboratory setting. We propose a novel method of noninvasive CO assessment using a single, upper-arm cuff. The method uses the arterial pressure pulse wave signal acquired from the brachial artery during 20-s intervals of suprasystolic occlusion. This method was evaluated in a cohort of 12 healthy individuals (age, 27.7 ± 5.4 yr, 50% men) and compared with an established method for noninvasive CO assessment, the open-circuit acetylene method (OpCirc) at rest, and during low- to moderate-intensity exercise. CO increased from rest to exercise (rest, 7.4 ± 0.8 vs. 7.2 ± 0.8; low, 9.8 ± 1.8 vs. 9.9 ± 2.0; moderate, 14.1 ± 2.8 vs. 14.8 ± 3.2 l/min) as assessed by the cuff-occlusion and OpCirc techniques, respectively. The average error of experimental technique compared with OpCirc was -0.25 ± 1.02 l/min, Pearson's correlation coefficient of 0.96 (rest + exercise), and 0.21 ± 0.42 l/min with Pearson's correlation coefficient of 0.87 (rest only). Bland-Altman analysis demonstrated good agreement between methods (within 95% boundaries); the reproducibility coefficient (RPC) = 0.84 l/min with R2 = 0.75 at rest and RPC = 2 l/min with R2 = 0.92 at rest and during exercise, respectively. In comparison with an established method to quantify CO, the cuff-occlusion method provides similar measures at rest and with light to moderate exercise. Thus, we believe this method has the potential to be used as a new, noninvasive method for assessing CO during exercise.

Zobrazit více v PubMed

Altman DG, Bland JM. Measurement in medicine : the analysis of method comparison studies. Statistician 32: 307–317, 1983. doi:10.2307/2987937. DOI

American College of Sports Medicine ACSM Guidelines for Exercise Testing and Prescription(8th ed). Indianapolis, IN: ACSM, 2010.

Angel K, Provan SA, Mowinckel P, Seljeflot I, Kvien TK, Atar D. The L-arginine/asymmetric dimethylarginine ratio is improved by anti-tumor necrosis factor-α therapy in inflammatory arthropathies. Associations with aortic stiffness. Atherosclerosis 225: 160–165, 2012. doi:10.1016/j.atherosclerosis.2012.08.033. PubMed DOI

Arai T, Lee K, Cohen RJ. Cardiac output and stroke volume estimation using a hybrid of three Windkessel models. Conf Proc IEEE Eng Med Biol Soc 2010: 4971–4974, 2010. doi:10.1109/IEMBS.2010.5627225. PubMed DOI

Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, Cziraki A, Nickering G, Mengden T. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens 26: 523–528, 2008. doi:10.1097/HJH.0b013e3282f314f7. PubMed DOI

Beck KC, Johnson BD, Olson TP, Wilson TA. Ventilation-perfusion distribution in normal subjects. J Appl Physiol (1985) 113: 872–877, 2012. doi:10.1152/japplphysiol.00163.2012. PubMed DOI PMC

Beck KC, Randolph LN, Bailey KR, Wood CM, Snyder EM, Johnson BD. Relationship between cardiac output and oxygen consumption during upright cycle exercise in healthy humans. J Appl Physiol (1985) 101: 1474–1480, 2006. doi:10.1152/japplphysiol.00224.2006. PubMed DOI

Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 8: 135–160, 1999. doi:10.1191/096228099673819272. PubMed DOI

Bourgeois MJ, Gilbert BK, Von Bernuth G, Wood EH. Continuous determination of beat to beat stroke volume from aortic pressure pulses in the dog. Circ Res 39: 15–24, 1976. doi:10.1161/01.RES.39.1.15. PubMed DOI

Bronzino JD. Biomedical Engineering Fundamentals (3rd ed.). Boca Raton, FL: CRC Press, 2006.

Collier CR. Determination of mixed venous CO2 tensions by rebreathing. J Appl Physiol 9: 25–29, 1956. PubMed

D’Alto M, Romeo E, Argiento P, D’Andrea A, Vanderpool R, Correra A, Bossone E, Sarubbi B, Calabrò R, Russo MG, Naeije R. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int J Cardiol 168: 4058–4062, 2013. doi:10.1016/j.ijcard.2013.07.005. PubMed DOI

Fabian V, Havlik J, Dvorak J, Kremen V, Sajgalik P, Bellamy V, Schirger JA, Sovka P, Johnson BD. Differences in mean arterial pressure of young and elderly people measured by oscilometry during inflation and deflation of the arm cuff. Biomed Tech (Berl) /j/bmte.ahead-of-print/bmt-2015-0098/bmt-2015-0098.xml, 2016. doi:10.1515/bmt-2015-0098. PubMed DOI

Fares WH, Blanchard SK, Stouffer GA, Chang PP, Rosamond WD, Ford HJ, Aris RM. Thermodilution and Fick cardiac outputs differ: impact on pulmonary hypertension evaluation. Can Respir J 19: 261–266, 2012. doi:10.1155/2012/261793. PubMed DOI PMC

Fegler G. Measurement of cardiac output in anaesthetized animals by a thermodilution method. Q J Exp Physiol Cogn Med Sci 39: 153–164, 1954. PubMed

Fick A. Über die Messung des Blutquantums in den Hertzventrikeln. Verhandl Phys Med Ges Würzburg 2: XVI, 1870.

Hametner B, Wassertheurer S, Kropf J, Mayer C, Holzinger A, Eber B, Weber T. Wave reflection quantification based on pressure waveforms alone–methods, comparison, and clinical covariates. Comput Methods Programs Biomed 109: 250–259, 2013. doi:10.1016/j.cmpb.2012.10.005. PubMed DOI

Havlik J, Dvorak J, Fabian V. Design and realization of hardware for measurement of hemodynamic parameters. In: World Congress on Medical Physics and Biomedical Engineering May 26–31, 2012, Beijing, China, IFMBE Proceedings, edited by Long M. Heidelberg: Springer, 2012, p. 1420–1423.

Herd JA, Leclair NR, Simon W. Arterial pressure pulse contours during hemorrhage in anesthetized dogs. J Appl Physiol 21: 1864–1868, 1966. PubMed

Hidvégi EV, Illyés M, Benczúr B, Böcskei RM, Rátgéber L, Lenkey Z, Molnár FT, Cziráki A. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hypertens 30: 2314–2321, 2012. doi:10.1097/HJH.0b013e328359562c. PubMed DOI

Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, Gaszner B, Cziráki A. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens 28: 2068–2075, 2010. doi:10.1097/HJH.0b013e32833c8a1a. PubMed DOI

Imholz BP, Langewouters GJ, van Montfrans GA, Parati G, van Goudoever J, Wesseling KH, Wieling W, Mancia G. Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording. Hypertension 21: 65–73, 1993. doi:10.1161/01.HYP.21.1.65. PubMed DOI

Jarvis SS, Levine BD, Prisk GK, Shykoff BE, Elliott AR, Rosow E, Blomqvist CG, Pawelczyk JA. Simultaneous determination of the accuracy and precision of closed-circuit cardiac output rebreathing techniques. J Appl Physiol (1985) 103: 867–874, 2007. doi:10.1152/japplphysiol.01106.2006. PubMed DOI

Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens 27: 2186–2191, 2009. doi:10.1097/HJH.0b013e32833057e8. PubMed DOI

Johnson BD, Beck KC, Proctor DN, Miller J, Dietz NM, Joyner MJ. Cardiac output during exercise by the open circuit acetylene washin method: comparison with direct Fick. J Appl Physiol (1985) 88: 1650–1658, 2000. PubMed

Jones WB, Hefner LL, Bancroft WH Jr, Klip W. Velocity of blood flow and stroke volume obtained from the pressure pulse. J Clin Invest 38: 2087–2090, 1959. doi:10.1172/JCI103986. PubMed DOI PMC

Kim CS, Fazeli N, McMurtry MS, Finegan BA, Hahn JO. Quantification of wave reflection using peripheral blood pressure waveforms. IEEE J Biomed Health Inform 19: 309–316, 2015. doi:10.1109/JBHI.2014.2307273. PubMed DOI

Lal SK, Henderson RJ, Cejnar M, Hart MG, Hunyor SN. Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. Hypertension 26: 307–314, 1995. doi:10.1161/01.HYP.26.2.307. PubMed DOI

Laskey WK, Kussmaul WG. Arterial wave reflection in heart failure. Circulation 75: 711–722, 1987. doi:10.1161/01.CIR.75.4.711. PubMed DOI

Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation 72: 1257–1269, 1985. doi:10.1161/01.CIR.72.6.1257. PubMed DOI

Levy RJ, Chiavacci RM, Nicolson SC, Rome JJ, Lin RJ, Helfaer MA, Nadkarni VM. An evaluation of a noninvasive cardiac output measurement using partial carbon dioxide rebreathing in children. Anesth Analg 99: 1642–1647, 2004. doi:10.1213/01.ANE.0000136952.85278.99. PubMed DOI

Liljestrand G, Zander E. Vergleichen die bestimmungen des minutenvolumens des herzens beim menschen mittels der stichoxydulmethode und durch blutdruckmessung. Ztschr ges exper med. 59: 105–122, 1928.

Linton NW, Linton RA. Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86: 486–496, 2001. doi:10.1093/bja/86.4.486. PubMed DOI

London GM, Guerin AP. Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 138: 220–224, 1999. doi:10.1016/S0002-8703(99)70313-3. PubMed DOI

Mackensen GB. Non-Invasive Cardiac Output Monitoring: Ready For Prime-Time. San Francisco, CA: International Anesthesia Research Society, 2012.

Maeda M, Yokota M, Iwase M, Miyahara T, Hayashi H, Sotobata I. Accuracy of cardiac output measured by continuous wave Doppler echocardiography during dynamic exercise testing in the supine position in patients with coronary artery disease. J Am Coll Cardiol 13: 76–83, 1989. doi:10.1016/0735-1097(89)90552-4. PubMed DOI

Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart 89: 1104–1109, 2003. doi:10.1136/heart.89.9.1104. PubMed DOI PMC

Mueller HS, Chatterjee K, Davis KB, Fifer MA, Franklin C, Greenberg MA, Labovitz AJ, Shah PK, Tuman KJ, Weil MH, Weintraub WS; American College of Cardiology . ACC expert consensus document. Present use of bedside right heart catheterization in patients with cardiac disease. J Am Coll Cardiol 32: 840–864, 1998. doi:10.1016/S0735-1097(98)00327-1. PubMed DOI

Mukkamala R, Reisner AT, Hojman HM, Mark RG, Cohen RJ. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis. IEEE Trans Biomed Eng 53: 459–467, 2006. doi:10.1109/TBME.2005.869780. PubMed DOI

Nishikawa T, Dohi S. Errors in the measurement of cardiac output by thermodilution. Can J Anaesth 40: 142–153, 1993. doi:10.1007/BF03011312. PubMed DOI

Opie LH. Heart physiology from cell to circulation. Philadelphia, PA: Lippincott Williams & Wilkins, 2004.

Penáz J. Criteria for set point estimation in the volume clamp method of blood pressure measurement. Physiol Res 41: 5–10, 1992. PubMed

Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse. Hypertension 51: 188–195, 2008. doi:10.1161/HYPERTENSIONAHA.107.092676. PubMed DOI

Rezai M-R, Goudot G, Winters C, Finn JD, Wu FC, Cruickshank JK. Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the Arteriograph and Omron HEM-9000. Hypertens Res 34: 1046–1051, 2011. doi:10.1038/hr.2011.75. PubMed DOI

Sun JX, Reisner AT, Saeed M, Heldt T, Mark RG. The cardiac output from blood pressure algorithms trial. Crit Care Med 37: 72–80, 2009. doi:10.1097/CCM.0b013e3181930174. PubMed DOI PMC

Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE. Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26: 267–278, 2012. doi:10.1007/s10877-012-9375-8. PubMed DOI PMC

van de Vosse FN, Stergiopulos N. Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43: 467–499, 2011. doi:10.1146/annurev-fluid-122109-160730. DOI

Verdouw PD, Beaune J, Roelandt J, Hugenholtz PG. Stroke volume from central aortic pressure? A critical assessment of the various formulae as to their clinical value. Basic Res Cardiol 70: 377–389, 1975. doi:10.1007/BF01914334. PubMed DOI

Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol (1985) 74: 2566–2573, 1993. PubMed

Wesseling KH, Purschke R, Smith NT, Wüst HJ, de Wit B, Weber HA. A computer module for the continuous monitoring of cardiac output in the operating theatre and the ICU. Acta Anaesthesiol Belg 27, Suppl: 327–341, 1976. PubMed

Zhang J, Critchley LA, Huang L. Five algorithms that calculate cardiac output from the arterial waveform: a comparison with Doppler ultrasound. Br J Anaesth 115: 392–402, 2015. doi:10.1093/bja/aev254. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis

. 2022 Sep 26 ; 22 (19) : . [epub] 20220926

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...