Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HL71478
Mayo Clinic
TH04010173
Technology Agency of the Czech Republic
SGS19/166/OHK3/3T/13
Czech Technical University in Prague
SGS22/160/OHK3/3T/13
Czech Technical University in Prague
PubMed
36236381
PubMed Central
PMC9572570
DOI
10.3390/s22197285
PII: s22197285
Knihovny.cz E-zdroje
- Klíčová slova
- cuff, non-invasive, occlusion, pulse wave,
- MeSH
- analýza pulzové vlny * MeSH
- arteria brachialis * fyziologie MeSH
- dospělí MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- měření krevního tlaku metody MeSH
- mladý dospělý MeSH
- prsty ruky MeSH
- srdeční frekvence MeSH
- studie proveditelnosti MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Czech physiologist Penaz tried to overcome limitations of invasive pulse-contour methods (PCM) in clinical applications by a non-invasive method (finger mounted BP cuff) for continuous arterial waveform detection and beat-to-beat analysis. This discovery resulted in significant interest in human physiology and non-invasive examination of hemodynamic parameters, however has limitations because of the distal BP recording using a volume-clamp method. Thus, we propose a validation of beat-to-beat signal analysis acquired by novel a brachial occlusion-cuff (suprasystolic) principle and signal obtained from Finapres during a forced expiratory effort against an obstructed airway (Valsalva maneuver). Twelve healthy adult subjects [2 females, age = (27.2 ± 5.1) years] were in the upright siting position, breathe through the mouthpiece (simultaneously acquisition by brachial blood pressure monitor and Finapres) and at a defined time were asked to generate positive mouth pressure for 20 s (Valsalva). For the purpose of signal analysis, we proposed parameter a “Occlusion Cuff Index” (OCCI). The assumption about similarities between measured signals (suprasystolic brachial pulse waves amplitudes and Finapres’s MAP) were proved by averaged Pearson’s correlation coefficient (r- = 0.60, p < 0.001). The averaged Pearson’s correlation coefficient for the comparative analysis of OCCI between methods was r- = 0.88, p < 0.001. The average percent change of OCCI during maneuver: 8% increase, 19% decrease and percent change of max/min ratio is 35%. The investigation of brachial pulse waves measured by novel brachial blood pressure monitor shows positive correlation with Finapres and the parameter OCCI shows promise as an index, which could describe changes during beat-to-beat cardiac cycles.
Zobrazit více v PubMed
Verdouw P.D., Beaune J., Roelandt J., Hugenholtz P.G. Stroke volume from central aortic pressure? A critical assessment of the various formulae as to their clinical value. Basic Res. Cardiol. 1975;70:377–389. doi: 10.1007/BF01914334. PubMed DOI
Sun J.X., Reisner A.T., Saeed M., Heldt T., Mark R.G. The cardiac output from blood pressure algorithms trial. Crit. Care Med. 2009;37:72–80. doi: 10.1097/CCM.0b013e3181930174. PubMed DOI PMC
Hofer C.K., Senn A., Weibel L., Zollinger A. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit. Care. 2012;67:377–383. doi: 10.1186/cc6933. PubMed DOI PMC
Broch O., Renner J., Gruenewald M., Meybohm P., Schöttler J., Caliebe A., Steinfath M., Malbrain M., Bein B. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012;67:377–383. doi: 10.1111/j.1365-2044.2011.07018.x. PubMed DOI
Wesseling K.H. Blood Pressure Measurements. Springer; Berlin/Heidelberg, Germany: 1990. Finapres, continuous noninvasive finger arterial pressure based on the method of Penaz; pp. 161–172.
Truijen J., Van Lieshout J.J., Wesselink W.A., Westerhof B.E. Noninvasive continuous hemodynamic monitoring. J. Clin. Monit. Comput. 2012;26:267–278. doi: 10.1007/s10877-012-9375-8. PubMed DOI PMC
Alhashemi J.A., Cecconi M., Hofer C.K. Cardiac output monitoring: An integrative perspective. Annu. Update Intensive Care Emerg. Med. 2011;2011:443–456. PubMed PMC
Stouffer G.A., editor. Cardiovascular Hemodynamics for the Clinician. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Lal S.K.L., Henderson R.J., Cejnar M., Hart M.G., Hunyor S.N. Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. Hypertension. 1995;26:307–314. doi: 10.1161/01.HYP.26.2.307. PubMed DOI
Imholz B.P., Langewouters G.J., van Montfrans G.A., Parati G., van Goudoever J., Wesseling K.H., Wieling W., Mancia G. Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording. Hypertension. 1993;21:65–73. doi: 10.1161/01.HYP.21.1.65. PubMed DOI
Goldblatt A., Harrison D.C., Glick G., Braunwald E. Studies on cardiac dimensions in intact, unanaesthetised man. Circ. Res. 1963;13:448–467. PubMed
Hoffman J.E., Guz A., Charlier A.A., Wilcker D.E.L. Stroke volume in conscious dogs; effect of respiration, posture and vascular occlusion. J. Appl. Physiol. 1965;20:865–877. doi: 10.1152/jappl.1965.20.5.865. PubMed DOI
Karam M., Wise R.A., Natarajan T.K., Permutt S., Wagner H.N. Mechanism of decreased left ventricular stroke volume during inspiration in man. Circulation. 1984;69:866–873. doi: 10.1161/01.CIR.69.5.866. PubMed DOI
Guz B.Y.A., Innes J.A., Murphy K. Respiratory modulation of left ventricular stroke volume in man measured using pulsed doppler ultrasound. J. Physiol. 1987;393:499–512. doi: 10.1113/jphysiol.1987.sp016836. PubMed DOI PMC
Zema M.J., Masters A.P., Margouleff D. Dyspnea: The heart or the lungs? Differentiation at bedside by use of the simple Valsalva maneuver. Chest. 1984;85:59–64. doi: 10.1378/chest.85.1.59. PubMed DOI
Zema M.J., Restivo B., Sos T., Sniderman K.W., Kline S. Left ventricular dysfunction–bedside Valsalva manoeuvre. Br. Heart J. 1980;44:560–569. doi: 10.1136/hrt.44.5.560. PubMed DOI PMC
Gorlin R., Knowles J.H., Storey C.F. The valsalva maneuver as a test of cardiac function. Am. J. Med. 1957;22:197–212. doi: 10.1016/0002-9343(57)90004-9. PubMed DOI
Horváth I.G., Németh A., Lenkey Z., Alessandri N., Tufano F., Kis P., Gaszner B., Cziráki A. Invasive validation of a new oscillometric device (arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J. Hypertens. 2010;28:2068–2075. doi: 10.1097/HJH.0b013e32833c8a1a. PubMed DOI
Sajgalik P., Kremen V., Carlson A.R., Vratislav F., Kim C.-H., Wheatley C., Gerla V., Schirger J.A., Olson T.P., Johnson B.D. Non-invasive assessment of cardiac output by brachial cuff technique: Comparison to the open circuit acetylene washin method. J. Appl. Physiol. 2016;121:1319–1325. doi: 10.1152/japplphysiol.00981.2015. PubMed DOI PMC
Sajgalik P., Kremen V., Fabian V., Maltais S., Stulak J.M., Kushwaha S.S., Joyce L.D., Schirger J.A., Johnson B.D. Non-invasive Blood pressure monitor designed for heart failure patients supported with continuous-flow left ventricular assist devices. ASAIO J. 2018;65:127–133. doi: 10.1097/MAT.0000000000000775. PubMed DOI PMC
Fabian V., Matera L., Bayerova K., Havlik J., Kremen V., Pudil J., Sajgalik P., Zemanek D. Noninvasive assessment of aortic pulse wave velocity by the brachial occlusion-cuff technique: Comparative study. Sensors. 2019;19:3467. doi: 10.3390/s19163467. PubMed DOI PMC
Cross T.J., Sajgalik P., Fabian V., Matera L., Kushwaha S.S., Maltais S., Johnson B.D. Non-invasive assessment of arterial pulsatility in patients with continuous-flow left ventricular assist devices. Int. J. Artif. Organs. 2020;43:99–108. doi: 10.1177/0391398819868236. PubMed DOI
Fabian V., Kremen V., Dobias M. Method for an Accurate Automated Non-Invasive Measurement of Blood Pressure Waveform and Apparatus to Carry Out the Same. US10251567B2. U.S. Patent. 2017 January 9;
Alexander R.A. A note on averaging correlations. Bull. Psychon. Soc. 1990;28:335–336. doi: 10.3758/BF03334037. DOI
Stewart J.M., Medow M.A., Bassett B., Montgomery L.D. Effects of thoracic blood volume on Valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H798–H804. doi: 10.1152/ajpheart.01174.2003. PubMed DOI
Kurki T.S., Smith N.T., Sanford T.J., Jr., Head N. Pulse oximetry and finger blood pressure measurement during open-heart surgery. J. Clin. Monit. 1989;5:221–228. doi: 10.1007/BF01618251. PubMed DOI
de Simone G., Roman M.J., Koren M.J., Mensah G.A., Ganau A., Devereux R.B. Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension. Hypertension. 1999;33:800–805. doi: 10.1161/01.HYP.33.3.800. PubMed DOI
Lind L., Andrén B., Sundström J. The stroke volume/pulse pressure ratio predicts coronary heart disease mortality in a population of elderly men. J. Hypertens. 2004;22:899–905. doi: 10.1097/00004872-200405000-00010. PubMed DOI
Sugawara J., Hayashi K., Tanaka H. Distal shift of arterial pressure wave reflection sites with aging. Hypertension. 2010;56:920–925. doi: 10.1161/HYPERTENSIONAHA.110.160549. PubMed DOI PMC
Monge García M.I., Gil Cano A., Díaz Monrové J.C. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009;35:77–84. doi: 10.1007/s00134-008-1295-1. PubMed DOI
Tagawa K., Takahashi A., Yokota A., Sato T., Maeda S. Aortic diastolic pressure decay modulates relation between worsened aortic stiffness and myocardial oxygen supply/demand balance after resistance exercise. surgery patient? J. Appl. Physiol. 2019;127:737–744. doi: 10.1152/japplphysiol.00117.2019. PubMed DOI