Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis

. 2022 Sep 26 ; 22 (19) : . [epub] 20220926

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36236381

Grantová podpora
HL71478 Mayo Clinic
TH04010173 Technology Agency of the Czech Republic
SGS19/166/OHK3/3T/13 Czech Technical University in Prague
SGS22/160/OHK3/3T/13 Czech Technical University in Prague

Czech physiologist Penaz tried to overcome limitations of invasive pulse-contour methods (PCM) in clinical applications by a non-invasive method (finger mounted BP cuff) for continuous arterial waveform detection and beat-to-beat analysis. This discovery resulted in significant interest in human physiology and non-invasive examination of hemodynamic parameters, however has limitations because of the distal BP recording using a volume-clamp method. Thus, we propose a validation of beat-to-beat signal analysis acquired by novel a brachial occlusion-cuff (suprasystolic) principle and signal obtained from Finapres during a forced expiratory effort against an obstructed airway (Valsalva maneuver). Twelve healthy adult subjects [2 females, age = (27.2 ± 5.1) years] were in the upright siting position, breathe through the mouthpiece (simultaneously acquisition by brachial blood pressure monitor and Finapres) and at a defined time were asked to generate positive mouth pressure for 20 s (Valsalva). For the purpose of signal analysis, we proposed parameter a “Occlusion Cuff Index” (OCCI). The assumption about similarities between measured signals (suprasystolic brachial pulse waves amplitudes and Finapres’s MAP) were proved by averaged Pearson’s correlation coefficient (r- = 0.60, p < 0.001). The averaged Pearson’s correlation coefficient for the comparative analysis of OCCI between methods was r- = 0.88, p < 0.001. The average percent change of OCCI during maneuver: 8% increase, 19% decrease and percent change of max/min ratio is 35%. The investigation of brachial pulse waves measured by novel brachial blood pressure monitor shows positive correlation with Finapres and the parameter OCCI shows promise as an index, which could describe changes during beat-to-beat cardiac cycles.

Zobrazit více v PubMed

Verdouw P.D., Beaune J., Roelandt J., Hugenholtz P.G. Stroke volume from central aortic pressure? A critical assessment of the various formulae as to their clinical value. Basic Res. Cardiol. 1975;70:377–389. doi: 10.1007/BF01914334. PubMed DOI

Sun J.X., Reisner A.T., Saeed M., Heldt T., Mark R.G. The cardiac output from blood pressure algorithms trial. Crit. Care Med. 2009;37:72–80. doi: 10.1097/CCM.0b013e3181930174. PubMed DOI PMC

Hofer C.K., Senn A., Weibel L., Zollinger A. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit. Care. 2012;67:377–383. doi: 10.1186/cc6933. PubMed DOI PMC

Broch O., Renner J., Gruenewald M., Meybohm P., Schöttler J., Caliebe A., Steinfath M., Malbrain M., Bein B. A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia. 2012;67:377–383. doi: 10.1111/j.1365-2044.2011.07018.x. PubMed DOI

Wesseling K.H. Blood Pressure Measurements. Springer; Berlin/Heidelberg, Germany: 1990. Finapres, continuous noninvasive finger arterial pressure based on the method of Penaz; pp. 161–172.

Truijen J., Van Lieshout J.J., Wesselink W.A., Westerhof B.E. Noninvasive continuous hemodynamic monitoring. J. Clin. Monit. Comput. 2012;26:267–278. doi: 10.1007/s10877-012-9375-8. PubMed DOI PMC

Alhashemi J.A., Cecconi M., Hofer C.K. Cardiac output monitoring: An integrative perspective. Annu. Update Intensive Care Emerg. Med. 2011;2011:443–456. PubMed PMC

Stouffer G.A., editor. Cardiovascular Hemodynamics for the Clinician. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Lal S.K.L., Henderson R.J., Cejnar M., Hart M.G., Hunyor S.N. Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. Hypertension. 1995;26:307–314. doi: 10.1161/01.HYP.26.2.307. PubMed DOI

Imholz B.P., Langewouters G.J., van Montfrans G.A., Parati G., van Goudoever J., Wesseling K.H., Wieling W., Mancia G. Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording. Hypertension. 1993;21:65–73. doi: 10.1161/01.HYP.21.1.65. PubMed DOI

Goldblatt A., Harrison D.C., Glick G., Braunwald E. Studies on cardiac dimensions in intact, unanaesthetised man. Circ. Res. 1963;13:448–467. PubMed

Hoffman J.E., Guz A., Charlier A.A., Wilcker D.E.L. Stroke volume in conscious dogs; effect of respiration, posture and vascular occlusion. J. Appl. Physiol. 1965;20:865–877. doi: 10.1152/jappl.1965.20.5.865. PubMed DOI

Karam M., Wise R.A., Natarajan T.K., Permutt S., Wagner H.N. Mechanism of decreased left ventricular stroke volume during inspiration in man. Circulation. 1984;69:866–873. doi: 10.1161/01.CIR.69.5.866. PubMed DOI

Guz B.Y.A., Innes J.A., Murphy K. Respiratory modulation of left ventricular stroke volume in man measured using pulsed doppler ultrasound. J. Physiol. 1987;393:499–512. doi: 10.1113/jphysiol.1987.sp016836. PubMed DOI PMC

Zema M.J., Masters A.P., Margouleff D. Dyspnea: The heart or the lungs? Differentiation at bedside by use of the simple Valsalva maneuver. Chest. 1984;85:59–64. doi: 10.1378/chest.85.1.59. PubMed DOI

Zema M.J., Restivo B., Sos T., Sniderman K.W., Kline S. Left ventricular dysfunction–bedside Valsalva manoeuvre. Br. Heart J. 1980;44:560–569. doi: 10.1136/hrt.44.5.560. PubMed DOI PMC

Gorlin R., Knowles J.H., Storey C.F. The valsalva maneuver as a test of cardiac function. Am. J. Med. 1957;22:197–212. doi: 10.1016/0002-9343(57)90004-9. PubMed DOI

Horváth I.G., Németh A., Lenkey Z., Alessandri N., Tufano F., Kis P., Gaszner B., Cziráki A. Invasive validation of a new oscillometric device (arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J. Hypertens. 2010;28:2068–2075. doi: 10.1097/HJH.0b013e32833c8a1a. PubMed DOI

Sajgalik P., Kremen V., Carlson A.R., Vratislav F., Kim C.-H., Wheatley C., Gerla V., Schirger J.A., Olson T.P., Johnson B.D. Non-invasive assessment of cardiac output by brachial cuff technique: Comparison to the open circuit acetylene washin method. J. Appl. Physiol. 2016;121:1319–1325. doi: 10.1152/japplphysiol.00981.2015. PubMed DOI PMC

Sajgalik P., Kremen V., Fabian V., Maltais S., Stulak J.M., Kushwaha S.S., Joyce L.D., Schirger J.A., Johnson B.D. Non-invasive Blood pressure monitor designed for heart failure patients supported with continuous-flow left ventricular assist devices. ASAIO J. 2018;65:127–133. doi: 10.1097/MAT.0000000000000775. PubMed DOI PMC

Fabian V., Matera L., Bayerova K., Havlik J., Kremen V., Pudil J., Sajgalik P., Zemanek D. Noninvasive assessment of aortic pulse wave velocity by the brachial occlusion-cuff technique: Comparative study. Sensors. 2019;19:3467. doi: 10.3390/s19163467. PubMed DOI PMC

Cross T.J., Sajgalik P., Fabian V., Matera L., Kushwaha S.S., Maltais S., Johnson B.D. Non-invasive assessment of arterial pulsatility in patients with continuous-flow left ventricular assist devices. Int. J. Artif. Organs. 2020;43:99–108. doi: 10.1177/0391398819868236. PubMed DOI

Fabian V., Kremen V., Dobias M. Method for an Accurate Automated Non-Invasive Measurement of Blood Pressure Waveform and Apparatus to Carry Out the Same. US10251567B2. U.S. Patent. 2017 January 9;

Alexander R.A. A note on averaging correlations. Bull. Psychon. Soc. 1990;28:335–336. doi: 10.3758/BF03334037. DOI

Stewart J.M., Medow M.A., Bassett B., Montgomery L.D. Effects of thoracic blood volume on Valsalva maneuver. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H798–H804. doi: 10.1152/ajpheart.01174.2003. PubMed DOI

Kurki T.S., Smith N.T., Sanford T.J., Jr., Head N. Pulse oximetry and finger blood pressure measurement during open-heart surgery. J. Clin. Monit. 1989;5:221–228. doi: 10.1007/BF01618251. PubMed DOI

de Simone G., Roman M.J., Koren M.J., Mensah G.A., Ganau A., Devereux R.B. Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension. Hypertension. 1999;33:800–805. doi: 10.1161/01.HYP.33.3.800. PubMed DOI

Lind L., Andrén B., Sundström J. The stroke volume/pulse pressure ratio predicts coronary heart disease mortality in a population of elderly men. J. Hypertens. 2004;22:899–905. doi: 10.1097/00004872-200405000-00010. PubMed DOI

Sugawara J., Hayashi K., Tanaka H. Distal shift of arterial pressure wave reflection sites with aging. Hypertension. 2010;56:920–925. doi: 10.1161/HYPERTENSIONAHA.110.160549. PubMed DOI PMC

Monge García M.I., Gil Cano A., Díaz Monrové J.C. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009;35:77–84. doi: 10.1007/s00134-008-1295-1. PubMed DOI

Tagawa K., Takahashi A., Yokota A., Sato T., Maeda S. Aortic diastolic pressure decay modulates relation between worsened aortic stiffness and myocardial oxygen supply/demand balance after resistance exercise. surgery patient? J. Appl. Physiol. 2019;127:737–744. doi: 10.1152/japplphysiol.00117.2019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...