• This record comes from PubMed

Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase

. 2016 Oct 27 ; 6 () : 35894. [epub] 20161027

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that when two of the ANPs bind, they induce an unusual conformation change to the loop where the reaction product, pyrophosphate, is expected to bind. This and other structural differences between the Tbr and human enzymes suggest selective inhibitors for the Tbr enzyme can be designed.

See more in PubMed

W.H.O. Control and surveillance of human African trypanosomiasis. World Health Organ Tech Rep Ser, 1–237 (2013). PubMed

Keating J., Yukich J. O., Sutherland C. S., Woods G. & Tediosi F. Human African trypanosomiasis prevention, treatment and control costs: A systematic review. Acta Trop 150, 4–13 (2015). PubMed

Franco J. R., Simarro P. P., Diarra A. & Jannin J. G. Epidemiology of human African trypanosomiasis. Clin Epidemiol 6, 257–275 (2014). PubMed PMC

Munday J. C., Settimo L. & de Koning H. P. Transport proteins determine drug sensitivity and resistance in a protozoan parasite, Trypanosoma brucei. Front Pharmacol 6, 1–10 (2015). PubMed PMC

Luscher A., Lamprea-Burgunder E., Graf F. E., de Koning H. P. & Maser P. Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. Int J Parasitol Drugs Drug Resist 4, 55–63 (2014). PubMed PMC

Graf F. E. et al.. Chimerization at the AQP2-AQP3 locus is the genetic basis of melarsoprol-pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. Int J Parasitol Drugs Drug Resist 5, 65–68 (2015). PubMed PMC

Mogk S. et al.. Cyclical appearance of African trypanosomes in the cerebrospinal fluid: new insights in how trypanosomes enter the CNS. PLoS One 9, e91372 (2014). PubMed PMC

Doyle M. A., Gasser R. B., Woodcroft B. J., Hall R. S. & Ralph S. A. Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics 11, 1–14 (2010). PubMed PMC

Boitz J. M., Ullman B., Jardim A. & Carter N. S. Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 28, 345–352 (2012). PubMed PMC

de Jersey J. et al.. 6-oxopurine phosphoribosyltransferase: a target for the development of antimalarial drugs. Curr. Top. Med. Chem 11, 2085–2102 (2011). PubMed

Eakin A. E. et al.. Comparative complement selection in bacteria enables screening for lead compounds targeted to a purine salvage enzyme of parasites. Antimicrob Agents Chemother 39, 620–625 (1995). PubMed PMC

Berriman M. et al.. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005). PubMed

Li Q. et al.. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway. Mol Microbiol 97, 1006–1020 (2015). PubMed PMC

Berg M. et al.. Evaluation of nucleoside hydrolase inhibitors for treatment of African trypanosomiasis. Antimicrob Agents Chemother 54, 1900–1908 (2010). PubMed PMC

Vodnala M. et al.. Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei. J Biol Chem 283, 5380–5388 (2008). PubMed

Hammond D. J. & Gutteridge W. E. Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol 13, 243–261 (1984). PubMed

De Clercq E. & Holy A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 4, 928–940 (2005). PubMed

Keough D. T. et al.. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: a new class of antimalarial therapeutics. J Med Chem 52, 4391–4399 (2009). PubMed

Cesnek M. et al.. Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine-guanine-(xanthine) phosphoribosyltransferases. Bioorg Med Chem 20, 1076–1089 (2012). PubMed

Keough D. T. et al.. Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: a target for anti-malarial chemotherapy. Mol Biochem Parasitol 173, 165–169 (2010). PubMed

Keough D. T. et al.. Inhibition of the Escherichia coli 6-oxopurine phosphoribosyltransferases by nucleoside phosphonates: potential for new antibacterial agents. J Med Chem 56, 6967–6984 (2013). PubMed

Keough D. T. et al.. Acyclic nucleoside phosphonates containing a second phosphonate group are potent inhibitors of 6-oxopurine phosphoribosyltransferases and have antimalarial activity. J Med Chem 56, 2513–2526 (2013). PubMed

Krecmerova M. et al.. Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogs as potential antimalarial agents. Bioorg Med Chem 20, 1222–1230 (2012). PubMed

Eng W. S. et al.. First Crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase: complexes with GMP and pyrophosphate and with acyclic nucleoside phosphonates whose prodrugs have antituberculosis activity. J Med Chem 58, 4822–4838 (2015). PubMed

Hockova D. et al.. Synthesis of novel N-branched acyclic nucleoside phosphonates as potent and selective inhibitors of human, Plasmodium falciparum and Plasmodium vivax 6-oxopurine phosphoribosyltransferases. J Med Chem 55, 6209–6223 (2012). PubMed

Eakin A. E., Guerra A., Focia P. J., Torres-Martinez J. & Craig S. P. Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs. Antimicrob. Agents Chemother 41, 1686–1692 (1997). PubMed PMC

Berg M., Van der Veken P., Goeminne A., Haemers A. & Augustyns K. Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Curr Med Chem 17, 2456–2481 (2010). PubMed

Moynie L. et al.. Functional significance of four successive glycine residues in the pyrophosphate binding loop of fungal 6-oxopurine phosphoribosyltransferases. Protein Sci 21, 1185–1196 (2012). PubMed PMC

Valsecchi W. M. et al.. The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase. Biochim Biophys Acta 1864, 655–666 (2016). PubMed

Gasteiger E. et al.. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook 571–607 (Springer, 2005).

Shi W. et al.. The 2.0 Å structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nat Struct Biol 6, 588–593 (1999). PubMed

Focia P. J., Craig S. P. & Eakin A. E. Approaching the transition state in the crystal structure of a phosphoribosyltransferase. Biochemistry 37, 17120–17127 (1998). PubMed

Holm L. & Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545–W549 (2010). PubMed PMC

Shi W. et al.. The 2.0 Å structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. Biochemistry 38, 9872–9880 (1999). PubMed

Hazleton K. Z. et al.. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Chem Biol 19, 721–730 (2012). PubMed PMC

Eads J. C., Scapin G., Xu Y., Grubmeyer C. & Sacchettini J. C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell 78, 325–334 (1994). PubMed

Craig S. P. & Eakin A. E. Purine phosphoribosyltransferases. J Biol Chem 275, 20231–20234 (2000). PubMed

Sinha S. C. & Smith J. L. The PRT protein family. Curr Opin Struct Biol 11, 733–739 (2001). PubMed

Krissinel E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res 43, W314–W319 (2015). PubMed PMC

Krissinel E. & Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774–797 (2007). PubMed

Heroux A., White E. L., Ross L. J. & Borhani D. W. Crystal structures of the Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase-GMP and -IMP complexes: comparison of purine binding interactions with the XMP complex. Biochemistry 38, 14485–14494 (1999). PubMed

Heroux A., White E. L., Ross L. J., Davis R. L. & Borhani D. W. Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg2+ ions bound: insights into the catalytic mechanism. Biochemistry 38, 14495–14506 (1999). PubMed

Canyuk B. et al.. Interactions at the dimer interface influence the relative efficiencies for purine nucleotide synthesis and pyrophosphorolysis in a phosphoribosyltransferase. J Mol Biol 335, 905–921 (2004). PubMed

Guddat L. W., Vos S., Martin J. L., Keough D. T. & de Jersey J. Crystal structures of free, IMP-, and GMP-bound Escherichia coli hypoxanthine phosphoribosyltransferase. Protein Sci 11, 1626–1638 (2002). PubMed PMC

Monzani P. S., Trapani S., Thiemann O. H. & Oliva G. Crystal structure of Leishmania tarentolae hypoxanthine-guanine phosphoribosyltransferase. BMC Struct Biol 7, 1–11 (2007). PubMed PMC

Keough D. T., Brereton I. M., de Jersey J. & Guddat L. W. The crystal structure of free human hypoxanthine-guanine phosphoribosyltransferase reveals extensive conformational plasticity throughout the catalytic cycle. J Mol Biol 351, 170–181 (2005). PubMed

Wen J., Arakawa T. & Philo J. S. Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 240, 155–166 (1996). PubMed

Ullah M. O. et al.. Recombinant production of functional full-length and truncated human TRAM/TICAM-2 adaptor protein involved in Toll-like receptor and interferon signaling. Protein Expr Purif 106, 31–40 (2015). PubMed

McPhillips T. M. et al.. Blu-ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9, 401–406 (2002). PubMed

Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr 66, 125–132 (2010). PubMed PMC

McCoy A. J. et al.. Phaser crystallographic software. J Appl Crystallogr 40, 658–674 (2007). PubMed PMC

Adams P. D. et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221 (2010). PubMed PMC

Emsley P., Lohkamp B., Scott W. G. & Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501 (2010). PubMed PMC

Allen T. E. & Ullman B. Molecular characterization and overexpression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma cruzi. Mol Biochem Parasitol 65, 233–245 (1994). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...