Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27827926
PubMed Central
PMC6272939
DOI
10.3390/molecules21111476
PII: molecules21111476
Knihovny.cz E-resources
- Keywords
- Aeromonas, Bryozoa, Pectinatella magnifica, antimicrobial activity, bacteria, cyanobacteria, invasive species, toxicity,
- MeSH
- Aeromonas chemistry MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Bacteria drug effects MeSH
- Bacterial Toxins pharmacology MeSH
- Bryozoa chemistry microbiology MeSH
- Cell Line MeSH
- Chloroform pharmacology MeSH
- Hexanes pharmacology MeSH
- Humans MeSH
- Methanol pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Toxicity Tests MeSH
- Cell Survival drug effects MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Toxins MeSH
- Chloroform MeSH
- Hexanes MeSH
- Methanol MeSH
Pectinatella magnifica, an invasive bryozoan, might significantly affect ecosystem balance due to its massive occurrence in many areas in Europe and other parts of the world. Biological and chemical analyses are needed to get complete information about the impact of the animal on the environment. In this paper, we aimed to evaluate in vitro cytotoxic effects of five extracts prepared from P. magnifica using LDH assay on THP-1 cell line. Antimicrobial activities of extracts against 22 different bacterial strains were tested by microdilution method. Our study showed that all extracts tested, except aqueous portion, demonstrated LD50 values below 100 μg/mL, which indicates potential toxicity. The water extract of P. magnifica with LD50 value of 250 μg/mL also shows potentially harmful effects. Also, an environmental risk resulting from the presence and increasing biomass of potentially toxic benthic cyanobacteria in old colonies should not be underestimated. Toxicity of Pectinatella extracts could be partially caused by presence of Aeromonas species in material, since we found members of these genera as most abundant bacteria associated with P. magnifica. Furthermore, P. magnifica seems to be a promising source of certain antimicrobial agents. Its methanolic extract, hexane, and chloroform fractions possessed selective inhibitory effect on some potential pathogens and food spoiling bacteria in the range of MIC 0.5-10 mg/mL. Future effort should be made to isolate and characterize the content compounds derived from P. magnifica, which could help to identify the substance(s) responsible for the toxic effects of P. magnifica extracts.
See more in PubMed
Carroget P., Carroget L., Gruet Y., Baudet J., Dutertre M. Presence of colonies of the bryozoan Pectinatella magnifica Leidy 1851 in the Loire and the Nantes channel at Brest (Loire-Atlantique) Bull. Soc. Sci. Nat. Ouest. Fr. 2005;27:19–29.
Wood T.S. Bryozoans. In: Thorp J.H., Covich A.P., editors. Ecology and Classification of North American Freshwater Invertebrates. Academic Press; New York, NY, USA: 2001. pp. 505–525.
Kraepelin K. Zur Biologie und Fauna der Süßwasserbryozoen. Zool. Anz. 1884;7:319–321.
Balounová Z., Rajchard J., Švehla J., Šmahel L. The onset of invasion of bryozoan Pectinatella magnifica in South Bohemia (Czech Republic) Biologia. 2011;66:1091–1096. doi: 10.2478/s11756-011-0118-y. DOI
Rodriguez S., Vergon J.P. Pectinatella magnifica Leidy 1851 (Phylactolaemates), a species of bryozoa introduced in the north of Franche-Comté. Bull. Fr. Pech. Piscic. 2002;365/366:281–296. doi: 10.1051/kmae:2002036. DOI
Devin S., Bollache L., Noël P.Y., Beisel J.-N. Patterns of biological invasions in French freshwater systems by non-indigenous macroinvertebrates. Hydrobiologia. 2005;551:137–146. doi: 10.1007/s10750-005-4456-z. DOI
Balounová Z., Pechoušková E., Rajchard J., Joza V., Šinko J. World-Wide distribution of the Bryozoan Pectinatella magnifica (Leidy 1851) Eur. J. Environ. Sci. 2013;3:96–100.
Szekeres J., Akác A., Csányi B. First record of Pectinatella magnifica (Leidy 1851) in Hungary. Water Res. Manag. 2013;3:47–49.
Notteghem P. Évolution de la distribution de la Pectinatelle, Pectinatella magnifica (Leidy, 1851), Bryozoaire d’eau douce, en France et en Europe. Rev. Sci. Bourgogne-Nat. 2009;9/10:188–197.
Hyunbin J., Gea-Jae J., Myeoungseop B., Dong-Gyun H., Jung-Soo G., Ji-Yoon K., Jong-Yun C. Distribute pattern of Pectinatella magnifica (Leidy, 1851), an invasive species, in the Geum River and the Nakdong River, South Korea. J. Ecol. Environ. 2014;37:217–223.
Oda S. Pectinatella magnifica occurring in Lake Shoji, Japan. Proc. Jpn. Soc. Syst. Zool. 1974;10:31–39.
Brown C.J.D. A limnological study of certain fresh-water Polyzoa with special reference to their statoblasts. Trans. Am. Micros. Soc. 1933;52:271–314. doi: 10.2307/3222415. DOI
Seo J.E. Taxonomy of the freshwater bryozoans from Korea. Korean J. Syst. Zool. 1998;14:371–378.
Borg F. Moostierchen oder Bryozoen (Ectoprocten) In: Bischoff H., editor. Muschelinge oder Moluscocieda und Manteltiere oder Tunicata (Kamptozoa, Phoronidea, Bryozoa, Tunicata, Ascidiae). Die Tierwelt Deutschlands und der angrenzenden Meersteile nach ihren Merkmalen und nach ihrer Lebensweise. Jena; Gustav Fisher, Germany: 1930. pp. 25–142.
Prinsep M.R., Yao B., Nicholson B.K., Gordon D.P. The pterocellins, bioactive alkaloids from the marine bryozoan Pterocella vesiculosa. Phytochem. Rev. 2004;3:325–331. doi: 10.1007/s11101-004-6146-2. PubMed DOI
Kollar P., Rajchard J., Balounová Z., Pazourek J. Marine natural products: Bryostatins in preclinical and clinical studies. Pharm. Biol. 2014;52:237–242. doi: 10.3109/13880209.2013.804100. PubMed DOI
Dunlap W.C., Battershill C.N., Liptrot C.H., Coob R.E., Bourne D.G., Jaspars M., Long P.F., Newman D.J. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods. 2007;42:358–376. doi: 10.1016/j.ymeth.2007.03.001. PubMed DOI
Figuerola B., Sla-Comorera L., Angulo-Preckler C., Vázquez J., Montes M.J., García-Aljaro C., Mercadé E., Blanch A.R., Avila C. Antimicrobial activity of Antarctic bryozoans: An ecological perspective with potential for clinical applications. Mar. Environ. Res. 2014;101:52–59. doi: 10.1016/j.marenvres.2014.09.001. PubMed DOI
Peters L., König M., Wright A.D., Pukall R., Stackebrandt E., Eberl L., Riede K. Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl. Environ. Microbiol. 2003;69:3469–3475. doi: 10.1128/AEM.69.6.3469-3475.2003. PubMed DOI PMC
Walls J.T., Ritz D.A., Blackman A.J. Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. J. Exp. Mar. Biol. Ecol. 1993;169:1–13. doi: 10.1016/0022-0981(93)90039-Q. DOI
Sharp K.H., Davidson S.K., Haygood M.G. Localization of ‘Candidatus Endobugula Sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J. 2007;1:693–702. doi: 10.1038/ismej.2007.78. PubMed DOI
Molinski T.F., Dalisay D.S., Lievens S.L., Saludes J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009;8:69–85. doi: 10.1038/nrd2487. PubMed DOI
Paul V.J., Arthur K.E., Ritson-Williams R., Ross C., Sharp K. Chemical defenses: From Compounds to Communities. Biol. Bull. 2007;213:226–251. doi: 10.2307/25066642. PubMed DOI
Lopanik N., Gufson K.R., Lindquist N. Structure of bryostatin 20: A symbiont-produced chemical. Defense for larvae of the host bryozoan, Bugula neritina. J. Nat. Prod. 2004;67:1412–1414. doi: 10.1021/np040007k. PubMed DOI
Pejin B., Glamoclija J., Ciric A., Radotic K., Vajs V., Tesevic V., Hegedis A., Karaman I., Horvatovic M., Sokovic M. Antimicrobial activity of the freshwater bryozoan Hyalinella punctata (Hancock, 1850) Dig. J. Nanomater. Biostruct. 2012;7:1021–1026.
Pejin B., Ciric A., Horvatovic M., Jurca T., Glamoclija J., Nikolic M., Sokovic M. An insight into antimicrobial activity of the freshwater bryozoan Pectinatella magnifica. Nat. Prod. Res. 2016;30:1839–1843. doi: 10.1080/14786419.2015.1068773. PubMed DOI
Pejin B., Ciric A., Karaman I., Horvatovic M., Glamoclija J., Nikolic M., Sokovic M. In vitro antibiofilm activity of the freshwater bryozoan Hyalinella punctata: A case study of Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2016;30:1847–1850. doi: 10.1080/14786419.2015.1072714. PubMed DOI
Gad S.C. Alternatives to in vivo studies in toxicology. In: Ballantyne B., Marrs T., Syversen T., editors. General and Applied Toxicology. Volume 1. Grove’s Dictionaries Inc.; New York, NY, USA: 1999. p. 178.
Šetlíková I., Skácelová O., Šinko J., Rajchard J., Balounová Z. Ecology of Pectinatella magnifica and associated algae and cyanobacteria. Biologia. 2013;68:1136–1141. doi: 10.2478/s11756-013-0262-7. DOI
Shine R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Q. Rev. Biol. 2010;85:253–291. doi: 10.1086/655116. PubMed DOI
Wood S.A., Smith F.M., Heath M.W., Palfroy T., Gaw S., Young R.G., Ryan K.G. Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic Phormidium. (cyanobacteria) strains. Toxins. 2012;4:900–912. doi: 10.3390/toxins4100900. PubMed DOI PMC
Morse W. The chemical constitution of Pectinatella. Science (New York) 1930;71:265. doi: 10.1126/science.71.1836.265. PubMed DOI
Pazourek J., Šmejkal K., Kollár P., Rajchard J., Šinko J., Balounová Z., Vlková E., Salmonová H. Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2016;111:278–285.
Fajkusová D., Pesko M., Keltošová S., Guo J., Oktabec Z., Vejsová M., Kollár P., Coffey A., Csollei J., Králová K., et al. Anti-Infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI
Kos J., Zadražilová I., Peško M., Keltošová S., Tengler J., Goněc T., Bobáľ P., Kauerová T., Oravec M., Kollár P., et al. Antibacterial and herbicidal activity of ring-substituted 3-Hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Bhunia A.K. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. Springer; New York, NY, USA: 2008. p. 134.
Silver A.C., Williams D., Faucher J., Horneman A.J., Gogarten J.P., Graf J. Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data. PLoS ONE. 2011;6:e16751. doi: 10.1371/journal.pone.0016751. PubMed DOI PMC
Sreedharan K., Philip R., Singh I.S. Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Anton Leeuw. 2013;103:53–67. doi: 10.1007/s10482-012-9786-z. PubMed DOI
Heindl H., Wiese J., Thiel V., Imhoff J.F. Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst. Appl. Microbiol. 2010;33:94–104. doi: 10.1016/j.syapm.2009.12.002. PubMed DOI
Cronberg G., Annadotter H. Manual on Aquatic Cyanobacteria. A Photo Guide and a Synopsis of Their Toxicology. ISSHA; Copenhagen, Denmark: 2006. p. 106.
Glowacka J., Szefel-Markowska M., Waleron M., Łojkowska E., Waleron K. Detection and identification of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim. Pol. 2011;58:321–333. PubMed
Quiblier C., Wood S., Echenique-Subiabre I., Heath M., Villeneuve A., Humbert J.-F. A review of current knowledge on toxic benthic freshwater cyanobacteria—Ecology, toxin production and risk management. Water Res. 2013;47:5464–5479. PubMed
Babica P., Kohoutek J., Bláha L., Adamovský O., Maršálek B. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal. Bioanal. Chem. 2006;385:1545–1551. doi: 10.1007/s00216-006-0545-8. PubMed DOI
Faltermann S., Pretot R., Pernthaler J., Fent K. Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1) Aquat. Toxicol. 2016;171:69–76. doi: 10.1016/j.aquatox.2015.11.016. PubMed DOI
Chen L., Chen J., Zhang X.Z., Xie P. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 2016;301:381–399. doi: 10.1016/j.jhazmat.2015.08.041. PubMed DOI
Guidelines for Drinking Water Quality. World Health Organization; Geneva, Switzerland: 2004. p. 407.
Kohoutek J., Adamovský O., Oravec M., Simek Z., Palíková M., Kopp R., Bláha L. LC-MS analyses of microcystins in fish tissues overestimate toxin levels-critical comparison with LC-MS/MS. Anal. Bioanal. Chem. 2010;398:1231–1237. doi: 10.1007/s00216-010-3860-z. PubMed DOI
Bláhová L., Babica P., Maršálková E., Maršálek B., Bláha L. Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic—Results of the national monitoring program. Clean-Soil Air Water. 2007;35:348–354. doi: 10.1002/clen.200700010. DOI
Bláhova L., Babica P., Adamovský O., Kohoutek J., Maršálek B., Bláha L. Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ. Chem. Lett. 2008;6:223–227. doi: 10.1007/s10311-007-0126-x. DOI
Jančula D., Straková L., Sadílek J., Maršálek B., Babica P. Survey of cyanobacterial toxins in Czech water reservoirs - the first observation of neurotoxic saxitoxins. Environ. Sci. Pollut. Res. 2014;21:8006–8015. doi: 10.1007/s11356-014-2699-9. PubMed DOI
Carey C.C., Haney J.F., Cottingham K.L. First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ. Toxicol. 2007;22:337–339. doi: 10.1002/tox.20245. PubMed DOI
Richardson L.L., Sekar R., Myers J.L., Gantar M., Voss J.D., Kaczmarsky L., Remily E.R., Boyer G.L., Zimba P.V. The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiol. Lett. 2007;272:182–187. doi: 10.1111/j.1574-6968.2007.00751.x. PubMed DOI
Kaasalainen U., Fewer D.P., Jokela J., Wahlsten M., Sivonen K., Rikkinen J. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA. 2012;109:5886–5891. doi: 10.1073/pnas.1200279109. PubMed DOI PMC
Bellinger B.J., Hagerthey S.E. Presence and Diversity of Algal Toxins in Subtropical Peatland Periphyton: the Florida Everglades, USA. J. Phycol. 2010;46:674–678. doi: 10.1111/j.1529-8817.2010.00832.x. DOI
Testai E., Buratti F.M., Funari E., Manganelli M., Vichi S., Arnich N., Biré R., Fessard V., Sialehaamoa A. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Support. Publ. 2016;13 doi: 10.2903/sp.efsa.2016.EN-998. DOI
Ibelings B.W., Havens K.E. Cyanobacterial toxins: A qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In: Hudnell H.K., editor. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer; Berlin, Germany: 2008. pp. 675–732. PubMed
Sieniawska E., Baj T., Dudka J., Gieroba R., Swiatek L., Rajtar B., Glowniak K., Polz-Dacewicz M. Cytotoxicity, antioxidant activity and an effect on CYP3A4 and CYP2D6 of Mutellina purpurea L. extracts. Food Chem. Toxicol. 2013;52:188–192. doi: 10.1016/j.fct.2012.11.017. PubMed DOI
Kmeť V., Drugdová Z. Antimicrobial susceptibility of microflora from ovine cheese. Folia Microbiol. 2012;57:291–293. doi: 10.1007/s12223-012-0128-3. PubMed DOI