A Harmonized Perspective on Transportation Management in Smart Cities: The Novel IoT-Driven Environment for Road Traffic Modeling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27834796
PubMed Central
PMC5134531
DOI
10.3390/s16111872
PII: s16111872
Knihovny.cz E-zdroje
- Klíčová slova
- Internet of Things, embedded devices, genetic algorithm, optimization, smart city,
- Publikační typ
- časopisecké články MeSH
The unprecedented growth of today's cities together with increased population mobility are fueling the avalanche in the numbers of vehicles on the roads. This development led to the new challenges for the traffic management, including the mitigation of road congestion, accidents, and air pollution. Over the last decade, researchers have been focusing their efforts on leveraging the recent advances in sensing, communications, and dynamic adaptive technologies to prepare the deployed road traffic management systems (TMS) for resolving these important challenges in future smart cities. However, the existing solutions may still be insufficient to construct a reliable and secure TMS that is capable of handling the anticipated influx of the population and vehicles in urban areas. Along these lines, this work systematically outlines a perspective on a novel modular environment for traffic modeling, which allows to recreate the examined road networks in their full resemblance. Our developed solution is targeted to incorporate the progress in the Internet of Things (IoT) technologies, where low-power, embedded devices integrate as part of a next-generation TMS. To mimic the real traffic conditions, we recreated and evaluated a practical traffic scenario built after a complex road intersection within a large European city.
Department of Telecommunications Brno University of Technology 61600 Brno Czech Republic
Institute of Structural Mechanics Brno University of Technology 60200 Brno Czech Republic
Zobrazit více v PubMed
Albino V., Berardi U., Dangelico R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015;22:3–21. doi: 10.1080/10630732.2014.942092. DOI
Brettel M., Friederichsen N., Keller M., Rosenberg M. How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 2014;8:37–44.
Lee J., Kao H.A., Yang S. Service innovation and smart analytics for industry 4.0 and Big Data environment. Procedia CIRP. 2014;16:3–8. doi: 10.1016/j.procir.2014.02.001. DOI
European Commission: European Initiative on Smart Cities, 2010–2020. [(accessed on 20 July 2016)]. Available online: http://setis.ec.europa.eu/set-plan-implementation/technology-roadmaps/european-initiative-smart-cities.
European Commission: European Road Safety Observatory, Traffic Safety Basic Facts. [(accessed on 20 July 2016)]. Available online: http://ec.europa.eu/transport/road_safety/pdf/statistics/dacota/bfs20xx_dacota-swov-cyclists.pdf.
Rodrigue J.P., Comtois C., Slack B. The Geography of Transport Systems. Routledge; New York, NY, USA: 2013.
European Commission: European Parliamentary Research Service, Urban Mobility: Shifting towards sustainable transport systems. [(accessed on 20 July 2016)]. Available online: https://epthinktank.eu/2014/09/02/urban-mobility-shifting-towards-sustainable-transport-systems/
Barth M., Boriboonsomsin K. Real-world carbon dioxide impacts of traffic congestion. Transp. Res. Rec. J. Transp. Res. Board. 2008:163–171. doi: 10.3141/2058-20. DOI
Djahel S., Doolan R., Muntean G.M., Murphy J. A communications-oriented perspective on traffic management systems for smart cities: Challenges and innovative approaches. IEEE Commun. Surv. Tutor. 2015;17:125–151. doi: 10.1109/COMST.2014.2339817. DOI
Zanella A., Bui N., Castellani A., Vangelista L., Zorzi M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014;1:22–32. doi: 10.1109/JIOT.2014.2306328. DOI
Olshannikova E., Ometov A., Koucheryavy Y., Olsson T. Visualizing Big Data with Augmented and Virtual Reality: Challenges and research agenda. J. Big Data. 2015;2:1–27. doi: 10.1186/s40537-015-0031-2. DOI
European Commission: Pathways for transport in the post 2020 process. [(accessed on 20 July 2016)]. Available online: http://www.transport2020.org/publications.
Barba C.T., Mateos M.A., Soto P.R., Mezher A.M., Igartua M.A. Smart city for VANETs using warning messages, traffic statistics and intelligent traffic lights; Proceedings of the IEEE Intelligent Vehicles Symposium (IV); Alcalá de Henares, Spain. 3–7 June 2012; pp. 902–907.
Ezzat A.A., Farouk H.A., El-Kilany K.S., Abdelmoneim A.F. Development of a Stochastic Genetic Algorithm for Traffic Signal Timings Optimization; Proceedings of the 2014 Industrial and Systems Engineering Research Conference; Montreal, QC, Canada. 10 January 2014.
Gündoğan F., Karagoz Z., Kocyigit N., Karadag A., Ceylan H., Murat Y.Ş. An Evaluation of Adaptive Traffic Control System in Istanbul, Turkey. J. Traffic Logist. Eng. 2014;2:198–201. doi: 10.12720/jtle.2.3.198-201. DOI
Chin Y.K., Yong K., Bolong N., Yang S.S., Teo K.T.K. Multiple intersections traffic signal timing optimization with genetic algorithm; Proceedings of the IEEE International Conference on Control System, Computing and Engineering (ICCSCE); Penang, Malaysia. 25–27 November, 2011; pp. 454–459.
Odeh S.M. Management of an intelligent traffic light system by using genetic algorithm. J. Image Graph. 2013;1:90–93. doi: 10.12720/joig.1.2.90-93. DOI
Hsieh P.C., Chen Y.R., Wu W.H., Hsiung P.A. Timing Optimization and Control for Smart Traffic; Proceedings of the IEEE International Conference on Internet of Things (iThings), Green Computing and Communications (GreenCom), and Cyber, Physical and Social Computing (CPSCom); Taipei, Taiwan. 1–3 September 2014; pp. 9–16.
Pizzi S., Condoluci M., Araniti G., Molinaro A., Iera A. A Novel Approach for Unicast and Multicast Traffic Management in Wireless Networks; Proceeding of the IEEE 81st Vehicular Technology Conference (VTC); Glasgow, Scotland. 11–14 May 2015; pp. 1–5.
Chen B., Cheng H.H. A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 2010;11:485–497. doi: 10.1109/TITS.2010.2048313. DOI
Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. Wireless sensor networks: A survey. Comput. Netw. 2002;38:393–422. doi: 10.1016/S1389-1286(01)00302-4. DOI
Yick J., Mukherjee B., Ghosal D. Wireless sensor network survey. Comput. Networks. 2008;52:2292–2330. doi: 10.1016/j.comnet.2008.04.002. DOI
Leccese F. Remote-control system of high efficiency and intelligent street lighting using a ZigBee network of devices and sensors. IEEE Trans. Power Deliv. 2013;28:21–28. doi: 10.1109/TPWRD.2012.2212215. DOI
Leccese F., Cagnetti M., Calogero A., Trinca D., Pasquale S.d., Giarnetti S., Cozzella L. A New Acquisition and Imaging System for Environmental Measurements: An Experience on the Italian Cultural Heritage. Sensors. 2014;14:9290–9312. doi: 10.3390/s140509290. PubMed DOI PMC
Leccese F., Cagnetti M., Trinca D. A smart city application: A fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor network and WiMAX. Sensors. 2014;14:24408–24424. doi: 10.3390/s141224408. PubMed DOI PMC
Tubaishat M., Qi Q., Shang Y., Shi H. Wireless sensor-based traffic light control; Proceedings of the 5th IEEE Consumer Communications and Networking Conference; Las Vegas, NV, USA. 10–12 January 2008; pp. 702–706.
Tuyttens D., Fei H., Mezmaz M., Jalwan J. Simulation-based genetic algorithm towards an energy-efficient railway traffic control. Math. Probl. Eng. 2013 doi: 10.1155/2013/805410. DOI
Yoneyama A., Yeh C.H., Kuo C.C.J. Robust vehicle and traffic information extraction for highway surveillance. EURASIP J. Appl. Signal Process. 2005:2305–2321. doi: 10.1155/ASP.2005.2305. DOI
Tubaishat M., Shang Y., Shi H. Adaptive traffic light control with wireless sensor networks; Proceedings of the IEEE Consumer Communications and Networking Conference; Cork, Ireland. 11–13 January 2007; pp. 187–191.
Tubaishat M., Zhuang P., Qi Q., Shang Y. Wireless sensor networks in intelligent transportation systems. Wirel. Commun. Mob. Comput. 2009;9:287–302. doi: 10.1002/wcm.616. DOI
Bachir A., Dohler M., Watteyne T., Leung K.K. MAC essentials for wireless sensor networks. IEEE Commun. Surv. Tutor. 2010;12:222–248. doi: 10.1109/SURV.2010.020510.00058. DOI
Abondo C., Pierre S. Dynamic location and forwarding pointers for mobility management. Mob. Inf. Syst. 2005;1:3–24. doi: 10.1155/2005/656715. DOI
Tan S.K., Sooriyabandara M., Fan Z. M2M communications in the smart grid: Applications, standards, enabling technologies, and research challenges. Int. J. Digit. Multimedia Broadcast. 2011;2011:289015. doi: 10.1155/2011/289015. DOI
Biral A., Centenaro M., Zanella A., Vangelista L., Zorzi M. The challenges of M2M massive access in wireless cellular networks. Digit. Commun. Netw. 2015;1:1–19. doi: 10.1016/j.dcan.2015.02.001. DOI
Taleb T., Kunz A. Machine type communications in 3GPP networks: Potential, challenges, and solutions. IEEE Commun. Mag. 2012;50:178–184. doi: 10.1109/MCOM.2012.6163599. DOI
Beecham Research . Worldwide Cellular M2M Modules Forecast Market Brief. Beecham Research Limited; Cambridge, UK: 2010.
Lucero S. Maximizing Mobile Operator Opportunities in M2M: The Benefits of An M2M-Optimized Network. ABI Research; Oyster Bay, NY, USA: 2010.
Cisco Visual Networking Index: Global Mobile Data Traffic Forecast. [(accessed on 20 October 2016)]. Available online: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
Smart Wearables Market to Generate $53BN Hardware Revenues by 2019. [(accessed on 20 October 2016)]. Available online: https://www.juniperresearch.com/press/press-releases/smart-wearables-market-to-generate-$53bn-hardware.
OECD Digital Economy Papers . Machine-to-Machine Communications Connecting Billions of Devices. OECD Publishing; Paris, France: 2012.
Polese M., Centenaro M., Zanella A., Zorzi M. On the Evaluation of LTE Random Access Channel Overload in a Smart City Scenario. CoRR. 2016 doi: 10.1109/ICC.2016.7511430. DOI
Mahmoodi T. 5G and Software-defined Networking (SDN); Proceedings of the IET Conference; Stevenage, UK. 17 March 2015.
Softwarization and Virtualization in 5G Networks for Smart Cities. [(accessed on 20 October 2016)]. Available online: https://www.researchgate.net/profile/Massimo_Condoluci/publication/287644336_Softwarization_and_Virtualization_in_5G_Networks_for_Smart_Cities/links/567825e808ae502c99d56428.pdf.
NOKIA white paper LTE evolution for IoT connectivity. [(accessed on 20 October 2016)]. Available online: http://resources.alcatel-lucent.com/asset/200178.
Orsino A., Araniti G., Militano L., Alonso-Zarate J., Molinaro A., Iera A. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications. Sensors. 2016;16:836. doi: 10.3390/s16060836. PubMed DOI PMC
IEEE Standard Association. [(accessed on 19 August 2016)]. Available online: https://standards.ieee.org/about/get/802/802.11.html.
Masek P., Muthanna A., Hosek J. Suitability of MANET Routing Protocols for the Next-Generation National Security and Public Safety Systems; Proceedings of the International Conference on Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Petersburg, Russia. 26–28 August 2015; pp. 242–253.
Wireless M-BUS: An attractive M2M technology for 5G-grade home automation. [(accessed on 20 October 2016)]. Available online: http://s3.amazonaws.com/academia.edu.documents/40669513/lnicst.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1478227571&Signature=ac4HpHxYyRo54dBFcyPm8Txf7u83D&response-content-disposition=inline3B20filename3DWireless_M-BUS_An_Attractive_M2M_Technol.pdf.
Araniti G., Campolo C., Condoluci M., Iera A., Molinaro A. LTE for vehicular networking: A survey. IEEE Commun. Mag. 2013;51:148–157. doi: 10.1109/MCOM.2013.6515060. DOI
Lane N.D., Miluzzo E., Lu H., Peebles D., Choudhury T., Campbell A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010;48:140–150. doi: 10.1109/MCOM.2010.5560598. DOI
Ganti R.K., Ye F., Lei H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag. 2011;49:32–39. doi: 10.1109/MCOM.2011.6069707. DOI
Mahmoodi T., Seetharaman S. Traffic Jam: Handling the Increasing Volume of Mobile Data Traffic. IEEE Veh. Technol. Mag. 2014;9:56–62. doi: 10.1109/MVT.2014.2333765. DOI
Zhang Z., Ho P.H., Naït-Abdesselam F. RADAR: A reputation-driven anomaly detection system for wireless mesh networks. Wirel. Netw. 2010;16:2221–2236. doi: 10.1007/s11276-010-0255-1. DOI
Daly E.M., Lecue F., Bicer V. Westland row why so slow?: Fusing social media and linked data sources for understanding real-time traffic conditions; Proceedings of the 2013 international conference on Intelligent user interfaces; Santa Monica, CA, USA. 19–22 March 2013; pp. 203–212.
Araniti G., Orsino A., Militano L., Wang L., Iera A. Context-aware Information Diffusion for Alerting Messages in 5G Mobile Social Networks. IEEE Internet Things J. 2016;PP:1–10. doi: 10.1109/JIOT.2016.2561839. DOI
Lécué F., Schumann A., Sbodio M.L. Applying semantic web technologies for diagnosing road traffic congestions; Proceedings of the Iternational Semantic Web Conference; Boston, MA, USA. 11–15 November 2012; pp. 114–130.
Kumar A., Gupta S.K., Rai A.K., Sinha S. Social networking sites and their security issues. Int. J. Sci. Res. Publ. 2013;3:1–5.
Zhang K., Liang X., Shen X., Lu R. Exploiting multimedia services in mobile social networks from security and privacy perspectives. IEEE Commun. Mag. 2014;52:58–65. doi: 10.1109/MCOM.2014.6766086. DOI
Militano L., Orsino A., Araniti G., Nitti M., Atzori L., Iera A. Trust-based and Social-aware Coalition Formation Game for Multihop Data Uploading in 5G Systems. Comput. Netw. 2016;56:3594–3608. doi: 10.1016/j.comnet.2016.08.001. DOI
Li J., Zhang Z., Zhang W. Mobitrust: Trust management system in mobile social computing; Proceedings of the IEEE 10th International Conference on Computer and Information Technology (CIT); Bradford, UK. 29 June–1 July 2010; pp. 954–959.
Dwyer C., Hiltz S., Passerini K. Trust and privacy concern within social networking sites: A comparison of Facebook and MySpace; Proceedings of the AMCIS; Keystone, CO, USA. 9–12 August 2007.
Golbeck J. Trust and nuanced profile similarity in online social networks. ACM Trans. Web (TWEB) 2009;3:12. doi: 10.1145/1594173.1594174. DOI
Militano L., Orsino A., Araniti G., Molinaro A., Iera A. Overlapping coalitions for D2D-supported data uploading in LTE-A systems; Proceedings of the IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC); Hongkong, China. 30 August–2 September 2015; pp. 1526–1530.
Zhao J., Cao G. VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans. Veh. Technol. 2008;57:1910–1922. doi: 10.1109/TVT.2007.901869. DOI
Li F., Wang Y. Routing in vehicular ad hoc networks: A survey. IEEE Veh. Technol. Mag. 2007;2:12–22. doi: 10.1109/MVT.2007.912927. DOI
Santos R., Edwards A., Alvarez O. Towards an inter-vehicle communication algorithm; Proceedings of the 3rd International Conference on Electrical and Electronics Engineering, IEEE; Veracruz, Mexico. 6–8 September 2006; pp. 1–4.
Ding Y., Wang C., Xiao L. A static-node assisted adaptive routing protocol in vehicular networks; Proceedings of the Fourth ACM International Workshop on Vehicular ad hoc Networks; Montreal, QC, Canada. 10 September 2007; pp. 59–68.
Korkmaz G., Ekici E., Özgüner F., Özgüner Ü. Urban multi-hop broadcast protocol for inter-vehicle communication systems; Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks, ACM; Philadelphia, PA, USA. 1 October 2004; pp. 76–85.
Arzil S.A., Aghdam M.H., Jamali M.A.J. Adaptive routing protocol for VANETS in city environments using real-time traffic information; Proceedings of the International Conference on Information, Networking and Automation (ICINA); Kunming, China. 18–19 October 2010; pp. V2–V132.
Gong J., Xu C.Z., Holle J. Predictive directional greedy routing in vehicular ad hoc networks; Proceedings of the 27th International Conference on Distributed Computing Systems Workshops, ICDCSW; Toronto, ON, Canada. 22–29 June 2007; pp. 1–8.
Mo Z., Zhu H., Makki K., Pissinou N. MURU: A multi-hop routing protocol for urban vehicular ad hoc networks; Proceedings of the Third Annual International Conference on Mobile And Ubiquitous Systems: Networking & Services; San Jose, CA, USA. 17–21 July 2006; pp. 1–8.
Seet B.C., Liu G., Lee B.S., Foh C.H., Wong K.J., Lee K.K. A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications; Proceedings of the 3rd International Conference on Electrical and Electronics Engineering International Conference on Research in Networking; Athens, Greece. 9–14 May 2004; pp. 989–999.
Jerbi M., Meraihi R., Senouci S.M., Ghamri-Doudane Y. GyTAR: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments; Proceedings of the 3rd international workshop on Vehicular ad hoc networks; Glasgow, Scotland. 24–28 June 2007; pp. 88–89.
Sun W., Yamaguchi H., Yukimasa K., Kusumoto S. Gvgrid: A QoS routing protocol for vehicular ad hoc networks; Proceedings of the 14th IEEE International Workshop on Quality of Service; New Haven, CT, USA. 19–21 June 2006; pp. 130–139.
Durresi M., Durresi A., Barolli L. Emergency broadcast protocol for inter-vehicle communications; Procedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS’05); Fuduoka, Japan. 20–22 July 2005; pp. 402–406.
Sun M.T., Feng W.C., Lai T.H., Yamada K., Okada H., Fujimura K. GPS-based message broadcasting for inter-vehicle communication; Proceedings of the Parallel Processing Conference; Boston, MA, USA. 24–28 September 2000; pp. 279–286.
Bachir A., Benslimane A. A multicast protocol in ad hoc networks inter-vehicle geocast; Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference; Jeju, Korea. 22–25 April 2003; pp. 2456–2460.
Watteyne T., Augé-Blum I., Dohler M., Ubéda S., Barthel D. Centroid virtual coordinates—A novel near-shortest path routing paradigm. Comput. Netw. 2009;53:1697–1711. doi: 10.1016/j.comnet.2008.12.017. DOI
Tonguz O.K., Wisitpongphan N., Bai F. DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wirel. Commun. 2010;17:47–57. doi: 10.1109/MWC.2010.5450660. DOI
Naumov V., Gross T.R. Connectivity-aware routing (CAR) in vehicular ad-hoc networks; Proceedings of the 6th IEEE International Conference on Computer Communications; Anchorage, KY, USA. 6–12 May 2007; pp. 1919–1927.
Yiltas D., Perros H. Quality of service-based multi-domain routing under multiple quality of service metrics. IET Commun. 2011;5:327–336. doi: 10.1049/iet-com.2010.0144. DOI
Balon S., Skivée F., Leduc G. How well do traffic engineering objective functions meet TE requirements?; Proceedings of the International Conference on Research in Networking; Coimbra, Portugal. 15–19 May 2006; pp. 75–86.
Woeginger G.J. Combinatorial Optimization–Eureka. Springer; Aussois, France: 2003. Exact algorithms for NP-hard problems: A survey; pp. 185–207.
Vořechovskỳ M., Novák D. Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach. Probab. Eng. Mech. 2009;24:452–462. doi: 10.1016/j.probengmech.2009.01.004. DOI
Xie H., Zhang M. Parent selection pressure auto-tuning for tournament selection in genetic programming. IEEE Trans. Evolut. Comput. 2013;17:1–19. doi: 10.1109/TEVC.2011.2182652. DOI
Smart City BRNO. [(accessed on 18 October 2016)]. Available online: http://www2.brno.cz/index.php?lan=en&nav01=20608&nav02=20651.
Google Maps. [(accessed on 19 October 2016)]. Available online: https://goo.gl/maps/JcWS9ED4uvq.
Bang-Jensen J., Gutin G., Yeo A. When the greedy algorithm fails. Discret. Optim. 2004;1:121–127. doi: 10.1016/j.disopt.2004.03.007. DOI
Ometov A., Masek P., Malina L., Florea R., Hosek J., Andreev S., Hajny J., Niutanen J., Koucheryavy Y. Feasibility characterization of cryptographic primitives for constrained (wearable) IoT devices; Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops); Sydney, Australia. 14–18 March 2016; pp. 1–6.
Intel® Edison: One Tiny Platform, Endless Possibility. [(accessed on 19 October 2016)]. Available online: http://www.intel.de/content/www/de/de/do-it-yourself/edison.html.
Intel® Developer Zone, Installing the Eclipse* IDE. [(accessed on 19 October 2016)]. Available online: https://software.intel.com/en-us/installing-the-eclipse-ide.