Environmental Monitoring with Distributed Mesh Networks: An Overview and Practical Implementation Perspective for Urban Scenario

. 2019 Dec 16 ; 19 (24) : . [epub] 20191216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31888131

Grantová podpora
19-41-06301 Russian Science Foundation
313039 Academy of Finland
LO1401 National Sustainability Program

Almost inevitable climate change and increasing pollution levels around the world are the most significant drivers for the environmental monitoring evolution. Recent activities in the field of wireless sensor networks have made tremendous progress concerning conventional centralized sensor networks known for decades. However, most systems developed today still face challenges while estimating the trade-off between their flexibility and security. In this work, we provide an overview of the environmental monitoring strategies and applications. We conclude that wireless sensor networks of tomorrow would mostly have a distributed nature. Furthermore, we present the results of the developed secure distributed monitoring framework from both hardware and software perspectives. The developed mechanisms provide an ability for sensors to communicate in both infrastructure and mesh modes. The system allows each sensor node to act as a relay, which increases the system failure resistance and improves the scalability. Moreover, we employ an authentication mechanism to ensure the transparent migration of the nodes between different network segments while maintaining a high level of system security. Finally, we report on the real-life deployment results.

Zobrazit více v PubMed

NASA’s Jet Propulsion Laboratory Facts|The Effects of Climate Change. [(accessed on 14 December 2019)];2019 Available online: https://climate.nasa.gov/effects/

Pritchard H., Ligtenberg S., Fricker H., Vaughan D., Van den Broeke M., Padman L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature. 2012;484:502. doi: 10.1038/nature10968. PubMed DOI

Kim H.Y., Park S.Y., Yoo S.H. Public acceptability of introducing a biogas mandate in Korea: A contingent valuation study. Sustainability. 2016;8:1087. doi: 10.3390/su8111087. DOI

European Commission Causes of Climate Change. [(accessed on 14 December 2019)];2019 Available online: https://ec.europa.eu/clima/change/causes_en.

Zhu C., Rodrigues J.J., Leung V.C., Shu L., Yang L.T. Trust-based Communication for the Industrial Internet of Things. IEEE Commun. Mag. 2018;56:16–22. doi: 10.1109/MCOM.2018.1700592. DOI

Mozny R., Masek P., Stusek M., Zeman K., Ometov A., Hosek J. On the Performance of Narrow-band Internet of Things (NB-IoT) for Delay-tolerant Services; Proceedings of the 42nd International Conference on Telecommunications and Signal Processing (TSP); Budapest, Hungary. 1–3 July 2019; pp. 637–642.

Hosek J., Masek P., Andreev S., Galinina O., Ometov A., Kropfl F., Wiedermann W., Koucheryavy Y. A SyMPHOnY of integrated IoT businesses: Closing the gap between availability and adoption. IEEE Commun. Mag. 2017;55:156–164. doi: 10.1109/MCOM.2017.1700028. DOI

Lee H.C., Ke K.H. Monitoring of large-area IoT sensors using a LoRa wireless mesh network system: Design and evaluation. IEEE Trans. Instrum. Meas. 2018;67:2177–2187. doi: 10.1109/TIM.2018.2814082. DOI

Ometov A., Daneshfar N., Hazmi A., Andreev S., Carpio L.F.D., Amin P., Torsner J., Koucheryavy Y., Valkama M. System-level Analysis of IEEE 802.11ah Technology for Unsaturated MTC Traffic. Int. J. Sens. Netw. 2018;26:269–282. doi: 10.1504/IJSNET.2018.090480. DOI

Sisinni E., Saifullah A., Han S., Jennehag U., Gidlund M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018;14:4724–4734. doi: 10.1109/TII.2018.2852491. DOI

Masek P., Hudec D., Krejci J., Ometov A., Hosek J., Samouylov K. International Conference on Distributed Computer and Communication Networks. Springer; Berlin/Heidelberg, Germany: 2018. Communication Capabilities of Wireless M-BUS: Remote Metering Within SmartGrid Infrastructure; pp. 31–42.

Talavera J.M., Tobón L.E., Gómez J.A., Culman M.A., Aranda J.M., Parra D.T., Quiroz L.A., Hoyos A., Garreta L.E. Review of IoT Applications in Agro-industrial and Environmental Fields. Comput. Electron. Agric. 2017;142:283–297. doi: 10.1016/j.compag.2017.09.015. DOI

Sadeghi A.R., Wachsmann C., Waidner M. Security and Privacy Challenges in Industrial Internet of Things; Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC); San Francisco, CA, USA. 8–12 June 2015; pp. 1–6.

Frustaci M., Pace P., Aloi G., Fortino G. Evaluating Critical Security Issues of the IoT World: Present and Future Challenges. IEEE Internet Things J. 2018;5:2483–2495. doi: 10.1109/JIOT.2017.2767291. DOI

Ullah I., Ul Amin N., Zareei M., Zeb A., Khattak H., Khan A., Goudarzi S. A Lightweight and Provable Secured Certificateless Signcryption Approach for Crowdsourced IIoT Applications. Symmetry. 2019;11:1386. doi: 10.3390/sym11111386. DOI

Nesteruk S., Bezzateev S. Location-Based Protocol for the Pairwise Authentication in the Networks without Infrastructure; Proceedings of the 22nd Conference of Open Innovations Association (FRUCT); Jyvaskyla, Finland. 15–18 May 2018; pp. 190–197.

Kannengießer N., Lins S., Dehling T., Sunyaev A. What Does Not Fit Can be Made to Fit! Trade-Offs in Distributed Ledger Technology Designs. Trade-Offs Distrib. Ledger Technol. Des. 2019 doi: 10.2139/ssrn.3270859. DOI

Lamberti R., Fries C., Lücking M., Manke R., Kannengießer N., Sturm B., Komarov M.M., Stork W., Sunyaev A. Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Springer; Berlin/Heidelberg, Germany: 2019. An Open Multimodal Mobility Platform Based on Distributed Ledger Technology; pp. 41–52.

Vermesan O., Friess P. Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems. River Publishers; Aalborg, Denmark: 2013.

Masek P., Masek J., Frantik P., Fujdiak R., Ometov A., Hosek J., Andreev S., Mlynek P., Misurec J. A Harmonized Perspective on Transportation Management in Smart Cities: The Novel IoT-drive Eenvironment for Road Traffic Modeling. Sensors. 2016;16:1872. doi: 10.3390/s16111872. PubMed DOI PMC

Balageas D., Fritzen C.P., Güemes A. Structural Health Monitoring. Volume 90 John Wiley & Sons; Hoboken, NJ, USA: 2010.

Pun C.S.J., So C.W., Leung W.Y., Wong C.F. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. J. Quant. Spectrosc. Radiat. Transf. 2014;139:90–108. doi: 10.1016/j.jqsrt.2013.12.014. DOI

Hannan M., Arebey M., Begum R.A., Basri H. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. Waste Manag. 2011;31:2406–2413. doi: 10.1016/j.wasman.2011.07.022. PubMed DOI

Segura-Garcia J., Felici-Castell S., Perez-Solano J.J., Cobos M., Navarro J.M. Low-cost alternatives for urban noise nuisance monitoring using wireless sensor networks. IEEE Sens. J. 2014;15:836–844. doi: 10.1109/JSEN.2014.2356342. DOI

Shaban K.B., Kadri A., Rezk E. Urban air pollution monitoring system with forecasting models. IEEE Sens. J. 2016;16:2598–2606. doi: 10.1109/JSEN.2016.2514378. DOI

Wang S., Wan J., Li D., Zhang C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016;12:3159805. doi: 10.1155/2016/3159805. DOI

Karami M., McMorrow G.V., Wang L. Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system. J. Build. Eng. 2018;19:412–419. doi: 10.1016/j.jobe.2018.05.014. DOI

Risteska Stojkoska B., Popovska Avramova A., Chatzimisios P. Application of wireless sensor networks for indoor temperature regulation. Int. J. Distrib. Sens. Netw. 2014;10:502419. doi: 10.1155/2014/502419. DOI

Cao T., Thompson J.E. Personal monitoring of ozone exposure: A fully portable device for under $150 USD cost. Sens. Actuators B Chem. 2016;224:936–943. doi: 10.1016/j.snb.2015.10.090. DOI

Lohan E., Torres-Sospedra J., Leppäkoski H., Richter P., Peng Z., Huerta J. Wi-Fi crowdsourced fingerprinting dataset for indoor positioning. Data. 2017;2:32. doi: 10.3390/data2040032. DOI

Krivtsova I., Lebedev I., Sukhoparov M., Bazhayev N., Zikratov I., Ometov A., Andreev S., Masek P., Fujdiak R., Hosek J. Wired/Wireless Internet Communications. Springer; Berlin/Heidelberg, Germany: 2016. Implementing a Broadcast Storm Attack on a Mission-critical Wireless Sensor Network; pp. 297–308.

Felemban E. Advanced border intrusion detection and surveillance using wireless sensor network technology. Int. J. Commun. Netw. Syst. Sci. 2013;6:251. doi: 10.4236/ijcns.2013.65028. DOI

Santos A., Younis M. A sensor network for non-intrusive and efficient leak detection in long pipelines; Proceedings of the IFIP Wireless Days (WD); Niagara Falls, ON, Canada. 10–12 October 2011; pp. 1–6.

Makeenkov A., Lapitskiy I., Somov A., Baranov A. Flammable gases and vapors of flammable liquids: Monitoring with infrared sensor node. Sens. Actuators B Chem. 2015;209:1102–1107. doi: 10.1016/j.snb.2014.11.112. DOI

Gomaa R., Adly I., Sharshar K., Safwat A., Ragai H. ZigBee wireless sensor network for radiation monitoring at nuclear facilities; Proceedings of the 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC); Dubai, United Arab Emirates. 23–25 April 2013; pp. 1–4.

Henriques V., Malekian R. Mine safety system using wireless sensor network. IEEE Access. 2016;4:3511–3521. doi: 10.1109/ACCESS.2016.2581844. DOI

Dlodlo N., Kalezhi J. The Internet of Things in Agriculture for Sustainable Rural Development; Proceedings of the International Conference on Emerging Trends in Networks and Computer Communications (ETNCC); Windhoek, Namibia. 17–20 May 2015; pp. 13–18.

Aziz N.A.A., Aziz K.A. Managing disaster with wireless sensor networks; Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT2011); Seoul, Korea. 13–16 February 2011; pp. 202–207.

Faulkner M., Olson M., Chandy R., Krause J., Chandy K.M., Krause A. The next big one: Detecting earthquakes and other rare events from community-based sensors; Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks; Chicago, IL, USA. 12–14 April 2011; pp. 13–24.

Aslan Y.E., Korpeoglu I., Ulusoy Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 2012;36:614–625. doi: 10.1016/j.compenvurbsys.2012.03.002. DOI

Aqeel-ur-Rehma, Abbasi A.Z., Islam N., Shaikh Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces. 2014;36:263–270. doi: 10.1016/j.csi.2011.03.004. DOI

Chaudhary D., Nayse S., Waghmare L. Application of wireless sensor networks for greenhouse parameter control in precision agriculture. Int. J. Wirel. Mob. Netw. 2011;3:140–149. doi: 10.5121/ijwmn.2011.3113. DOI

Muller C.L., Chapman L., Grimmond C., Young D.T., Cai X.M. Toward a standardized metadata protocol for urban meteorological networks. Bull. Am. Meteorol. Soc. 2013;94:1161–1185. doi: 10.1175/BAMS-D-12-00096.1. DOI

Kim S.H., Kim D.H., Park H.D. Animal situation tracking service using RFID, GPS, and sensors; Proceedings of the Second International Conference on Computer and Network Technology; Bangkok, Thailand. 23–25 April 2010; pp. 153–156.

Medela A., Cendón B., González L., Crespo R., Nevares I. IoT multiplatform networking to monitor and control wineries and vineyards; Proceedings of the Future Network & Mobile Summit; Lisboa, Portugal. 3–5 July 2013; pp. 1–10.

Hwang J., Yoe H. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control. Sensors. 2010;10:10752–10777. doi: 10.3390/s101210752. PubMed DOI PMC

Casas O., López M., Quílez M., Martinez-Farre X., Hornero G., Rovira C., Pinilla M.R., Ramos P.M., Borges B., Marques H., et al. Wireless sensor network for smart composting monitoring and control. Measurement. 2014;47:483–495. doi: 10.1016/j.measurement.2013.09.026. DOI

Singh M., Rajan M., Shivraj V., Balamuralidhar P. Secure MQTT for Internet of Things (IoT); Proceedings of the Fifth International Conference on Communication Systems and Network Technologies; Gwalior, India. 4–6 April 2015; pp. 746–751.

Zakaria O.M., Hashim A.H.A., Hassan W.H., Khalifa O.O., Azram M., Goudarzi S., Jivanadham L.B., Zareei M. State-Aware Re-configuration Model for Multi-Radio Wireless Mesh Networks. KSII Trans. Internet Inf. Syst. 2017;11 doi: 10.3837/tiis.2017.01.008. DOI

Ahmed A., Bakar K.A., Channa M.I., Haseeb K., Khan A.W. A survey on trust based detection and isolation of malicious nodes in ad-hoc and sensor networks. Front. Comput. Sci. 2015;9:280–296. doi: 10.1007/s11704-014-4212-5. DOI

Pathan A.S.K. Security of Self-Organizing Networks: MANET, WSN, WMN, VANET. CRC Press; Boca Raton, FL, USA: 2016.

Ometov A., Zhidanov K., Bezzateev S., Florea R., Andreev S., Koucheryavy Y. Securing Network-Assisted Direct Communication: The Case of Unreliable Cellular Connectivity; Proceedings of the IEEE 14th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom); Helsinki, Finland. 20–22 August 2015.

Lee J., Stinson D.R. International Workshop on Selected Areas in Cryptography. Springer; Berlin/Heidelberg, Germany: 2004. Deterministic Key Predistribution Schemes for Distributed Sensor Networks; pp. 294–307.

Zhu S., Setia S., Jajodia S. LEAP+: Efficient Security Mechanisms for Large-scale Distributed Sensor Networks. ACM Trans. Sens. Netw. (TOSN) 2006;2:500–528. doi: 10.1145/1218556.1218559. DOI

Jang J., Kwon T., Song J. International Conference on Information Security Practice and Experience. Springer; Berlin/Heidelberg, Germany: 2007. A Time-based Key Management Protocol for Wireless Sensor Networks; pp. 314–328.

Zhang W., Tran M., Zhu S., Cao G. A Random Perturbation-based Scheme for Pairwise Key Establishment in Sensor Networks; Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing; Montreal, QC, Canada. 9–14 September 2007; pp. 90–99.

Lohan E.S., Koivisto M., Galinina O., Andreev S., Tolli A., Destino G., Costa M., Leppanen K., Koucheryavy Y., Valkama M. Benefits of Positioning-Aided Communication Technology in High-Frequency Industrial IoT. IEEE Commun. Mag. 2018;56:142–148. doi: 10.1109/MCOM.2018.1701057. DOI

Nesteruk S., Kovalenko V., Bezzateev S. A Survey on Localized Authentication Protocols for Wireless Sensor Networks; Proceedings of the Wave Electronics and its Application in Information and Telecommunication Systems (WECONF); St. Petersburg, Russia. 26–30 November 2018; pp. 1–7.

Furth P.G., Rahbee A.B. Optimal bus stop spacing through dynamic programming and geographic modeling. Transp. Res. Rec. 2000;1731:15–22. doi: 10.3141/1731-03. DOI

Traverso M., Donatello S., Moons H., Rodriguez R., Quintero M.G.C., JRC W.O., Van Tichelen P., Van V., Hoof T.G.V. Revision of the EU Green Public Procurement Criteria for Street Lighting and Traffic Signals. Publications Office of the European Union; Luxembourg: 2017.

Jelicic V., Magno M., Brunelli D., Paci G., Benini L. Context-adaptive multimodal wireless sensor network for energy-efficient gas monitoring. IEEE Sens. J. 2012;13:328–338. doi: 10.1109/JSEN.2012.2215733. DOI

Coleri S., Cheung S.Y., Varaiya P. Sensor networks for monitoring traffic; Proceedings of the Allerton Conference on Communication, Control and Computing; Monticello, IL, USA. 29 September–1 October 2004; pp. 32–40.

Devos M., Ometov A., Mäkitalo N., Aaltonen T., Andreev S., Koucheryavy Y. D2D communications for mobile devices: Technology overview and prototype implementation; Proceedings of the 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Lisbon, Portugal. 18–20 October 2016; pp. 124–129.

Atmel ATmega328P–8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash. [(accessed on 14 December 2019)];2019 Available online: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf.

ESPRESSIF ESP8266—Low-Power, Highly-Integrated Wi-Fi Solution. [(accessed on 14 December 2019)];2019 Available online: https://www.espressif.com/en/products/hardware/esp8266ex/overview.

Citrix Resurrecting Duckling: A Model for Securing IoT Devices. [(accessed on 14 December 2019)];2019 Available online: https://www.citrix.com/blogs/2015/04/20/resurrecting-duckling-a-model-for-securing-iot-devices/

Krentz K.F., Wunder G. 6DOKU: Towards Secure Over-the-Air Preloading of 6LOWPAN Nodes Using PHY Key Generation; Proceedings of the European Conference on Smart Objects, Systems and Technologies; Aachen, Germany. 16–17 July 2015; pp. 1–11.

Zareei M., Vargas-Rosales C., Anisi M.H., Musavian L., Villalpando-Hernandez R., Goudarzi S., Mohamed E.M. Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications. Energies. 2019;12:2794. doi: 10.3390/en12142794. DOI

Galinina O., Turlikov A., Hosek J., Andreev S. Energy efficient power allocation in a multi-radio mobile device with wireless energy harvesting; Proceedings of the 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); St. Petersburg, Russia. 6–8 October 2014; pp. 380–385.

Albic S-8205A/B Series: Battery Protection IC for 4-Series or 5-Series Cell Pack. [(accessed on 14 December 2019)];2019 Available online: https://www.ablic.com/en/doc/datasheet/battery_protection/S8205A_B_E.pdf.

IOLA and Ole Laursen Attractive JavaScript Plotting for jQuery. [(accessed on 14 December 2019)];2014 Available online: https://www.flotcharts.org.

Yandex Maps API–JavaScript API. [(accessed on 14 December 2019)];2019 Available online: https://tech.yandex.com/maps/jsapi/

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...