Uric Acid as a Marker of Mortality and Morbidity in Fabry Disease
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
27835692
PubMed Central
PMC5105940
DOI
10.1371/journal.pone.0166290
PII: PONE-D-16-22731
Knihovny.cz E-resources
- MeSH
- Biomarkers blood MeSH
- Stroke epidemiology MeSH
- Adult MeSH
- Fabry Disease blood epidemiology mortality MeSH
- Outcome Assessment, Health Care methods statistics & numerical data MeSH
- Kaplan-Meier Estimate MeSH
- Uric Acid blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Survival Rate MeSH
- Young Adult MeSH
- Morbidity MeSH
- Follow-Up Studies MeSH
- Disease Progression MeSH
- Proportional Hazards Models MeSH
- Prospective Studies MeSH
- Ischemic Attack, Transient epidemiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- Uric Acid MeSH
BACKGROUND: Serum uric acid (UA) elevation is common in patients with cardiovascular, renal and metabolic diseases. However, no study to date has analysed the role of UA in Fabry disease (FD). OBJECTIVES: To evaluate the association between serum UA levels and mortality and morbidity in FD. MATERIALS AND METHODS: We conducted a post-hoc analysis of a prospectively followed-up cohort of 124 patients with genetically proven FD. Serum UA levels were acquired at baseline; clinical events and mortality were assessed during regular visits every 6 to 12 months. The primary endpoint was a composite of multiple secondary outcomes: all-cause mortality, adverse cardiovascular events, progression of renal dysfunction and stroke or transient ischaemic attack (TIA). Predictive value was assessed using the Cox proportional hazards model and the Kaplan Meyer estimator. RESULTS: During follow-up of 7.4 ± 3.7 years, 64 (52%) patients reached the primary combined endpoint. Overall, UA levels were significantly associated with combined outcome (p < 0.001) and remained independently associated after correcting for age, sex and estimated glomerular filtration rate (hazard ratio [HR] per 20 μmol/l increase 1.09, 95% confidence interval [95%CI] (1.00-1.19), p = 0.04). UA was associated with overall mortality in univariate analysis (p = 0.021); however, the association did not reach statistical significance after multivariate correction (HR per 20 μmol/l increase 1.07 95%CI 0.93-1.25, p = 0.32). Higher UA levels were also associated with cardiac adverse outcomes, progression of left ventricular hypertrophy and progression of renal dysfunction (ps < 0.001). No association was observed between UA levels and stroke or TIA (p = 0.323). CONCLUSION AND IMPLICATIONS: Increased serum UA levels may represent an independent risk factor for adverse clinical outcomes in Fabry patients and are associated with all-cause mortality. UA is a widely available and cheap biomarker that may improve risk stratification of Fabry patients in clinical practice.
See more in PubMed
Karetova D, Bultas J, Dostalova G, Palecek T, Kovarnik T, Golan L, et al. Fabry disease—Vascular manifestations. Vasa. Verlag Hans Huber; 2010;39: 123–31. 10.1024/0301-1526/a000017 PubMed DOI
Rombach SM, Dekker N, Bouwman MG, Linthorst GE, Zwinderman AH, Wijburg FA, et al. Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta. 2010;1802: 741–8. 10.1016/j.bbadis.2010.05.003 PubMed DOI
Feig DI, Kang D-H, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359: 1811–21. 10.1056/NEJMra0800885 PubMed DOI PMC
Strasak AM, Kelleher CC, Brant LJ, Rapp K, Ruttmann E, Concin H, et al. Serum uric acid is an independent predictor for all major forms of cardiovascular death in 28,613 elderly women: a prospective 21-year follow-up study. Int J Cardiol. 2008;125: 232–9. 10.1016/j.ijcard.2007.11.094 PubMed DOI
Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231: 61–8. 10.1016/j.atherosclerosis.2013.08.023 PubMed DOI
Levey AS. A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. American College of Physicians; 2009;150: 604 10.7326/0003-4819-150-9-200905050-00006 PubMed DOI PMC
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16: 233–70. 10.1093/ehjci/jev014 PubMed DOI
Biegstraaten M, Arngrímsson R, Barbey F, Boks L, Cecchi F, Deegan PB, et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis. BioMed Central; 2015;10: 36 10.1186/s13023-015-0253-6 PubMed DOI PMC
Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. BMJ Publishing Group Ltd; 2015;52: 353–8. 10.1136/jmedgenet-2014-102797 PubMed DOI PMC
Wu XW, Muzny DM, Lee CC, Caskey CT. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34: 78–84. Available: http://www.ncbi.nlm.nih.gov/pubmed/1556746 PubMed
Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33: 774–97. Available: http://www.ncbi.nlm.nih.gov/pubmed/12208366 PubMed
Li J-M, Shah AM. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004;287: R1014–30. 10.1152/ajpregu.00124.2004 PubMed DOI
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58: 87–114. 10.1124/pr.58.1.6 PubMed DOI PMC
George J, Struthers AD. Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag. 2009;5: 265–72. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2672460&tool=pmcentrez&rendertype=abstract PubMed PMC
Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell. 1981;25: 67–82. Available: http://www.ncbi.nlm.nih.gov/pubmed/6895049 PubMed
Bakhtiiarov ZA. [Changes in xanthine oxidase activity in patients with circulatory failure]. Ter arkhiv. 1989;61: 68–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/2781495 PubMed
Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30: 217–26. 10.1111/j.1755-5922.2011.00277.x PubMed DOI
Higgins P, Walters MR, Murray HM, McArthur K, McConnachie A, Lees KR, et al. Allopurinol reduces brachial and central blood pressure, and carotid intima-media thickness progression after ischaemic stroke and transient ischaemic attack: a randomised controlled trial. Heart. 2014;100: 1085–92. 10.1136/heartjnl-2014-305683 PubMed DOI
Thanassoulis G. Gout, Allopurinol Use, and Heart Failure Outcomes. Arch Intern Med. 2010;170: 1358 10.1001/archinternmed.2010.198 PubMed DOI
Noman A, Ang DSC, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet (London, England). 2010;375: 2161–7. 10.1016/S0140-6736(10)60391-1 PubMed DOI PMC
Riegersperger M, Covic A, Goldsmith D. Allopurinol, uric acid, and oxidative stress in cardiorenal disease. Int Urol Nephrol. 2011;43: 441–9. 10.1007/s11255-011-9929-6 PubMed DOI
Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293: C584–96. 10.1152/ajpcell.00600.2006 PubMed DOI
Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26: 269–75. 10.1097/HJH.0b013e3282f240bf PubMed DOI
Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121: e71–8. 10.1159/000345509 PubMed DOI PMC
Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67: 1739–42. 10.1111/j.1523-1755.2005.00273.x PubMed DOI
Choi Y-J, Yoon Y, Lee K-Y, Hien TT, Kang KW, Kim K-C, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28: 3197–204. 10.1096/fj.13-247148 PubMed DOI
Ruggiero C, Cherubini A, Ble A, Bos AJG, Maggio M, Dixit VD, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27: 1174–81. 10.1093/eurheartj/ehi879 PubMed DOI PMC
Kang D-H. Uric Acid-Induced C-Reactive Protein Expression: Implication on Cell Proliferation and Nitric Oxide Production of Human Vascular Cells. J Am Soc Nephrol. 2005;16: 3553–3562. 10.1681/ASN.2005050572 PubMed DOI
Vitner EB, Platt FM, Futerman AH. Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem. 2010;285: 20423–7. 10.1074/jbc.R110.134452 PubMed DOI PMC
Shen J-S, Meng X-L, Moore DF, Quirk JM, Shayman JA, Schiffmann R, et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Mol Genet Metab. NIH Public Access; 2008;95: 163–8. 10.1016/j.ymgme.2008.06.016 PubMed DOI PMC
Moore DF, Ye F, Brennan M-L, Gupta S, Barshop BA, Steiner RD, et al. Ascorbate decreases Fabry cerebral hyperperfusion suggesting a reactive oxygen species abnormality: an arterial spin tagging study. J Magn Reson Imaging. 2004;20: 674–83. 10.1002/jmri.20162 PubMed DOI
Biancini GB, Vanzin CS, Rodrigues DB, Deon M, Ribas GS, Barschak AG, et al. Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochim Biophys Acta. 2012;1822: 226–32. 10.1016/j.bbadis.2011.11.001 PubMed DOI
Zarate YA, Hopkin RJ. Fabry’s disease. Lancet. 2008;372: 1427–1435. 10.1016/S0140-6736(08)61589-5 PubMed DOI
Palecek T, Bultas J, Hajek M, Karetova D, Kuchynka P, Kautzner J, et al. Association between cardiac energy metabolism and gain of left ventricular mass in Fabry disease. Int J Cardiol. 2010;144: 337–9. 10.1016/j.ijcard.2009.03.045 PubMed DOI
Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Köstler H, et al. Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail. 2011;13: 278–83. 10.1093/eurjhf/hfq211 PubMed DOI
Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of Xanthine Oxidase Inhibition in Hyperuricemic Heart Failure Patients: The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation. 2015;131: 1763–71. 10.1161/CIRCULATIONAHA.114.014536 PubMed DOI PMC
Doehner W, Landmesser U. Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Semin Nephrol. 2011;31: 433–40. 10.1016/j.semnephrol.2011.08.007 PubMed DOI
Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003;91: 7A–11A. Available: http://www.ncbi.nlm.nih.gov/pubmed/12645638 PubMed
Niskanen LK, Laaksonen DE, Nyyssönen K, Alfthan G, Lakka H-M, Lakka TA, et al. Uric acid level as a risk factor for cardiovascular and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. American Medical Association; 2004;164: 1546–51. 10.1001/archinte.164.14.1546 PubMed DOI
Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17: 1466–71. 10.1681/ASN.2005090949 PubMed DOI
Yiginer O, Ozcelik F, Inanc T, Aparci M, Ozmen N, Cingozbay BY, et al. Allopurinol improves endothelial function and reduces oxidant-inflammatory enzyme of myeloperoxidase in metabolic syndrome. Clin Res Cardiol. 2008;97: 334–40. 10.1007/s00392-007-0636-3 PubMed DOI
Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt D V, Reaveley DA, et al. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105: 2619–24. Available: http://www.ncbi.nlm.nih.gov/pubmed/12045167 PubMed
Butler R, Morris AD, Belch JJ, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension. 2000;35: 746–51. Available: http://www.ncbi.nlm.nih.gov/pubmed/10720589 PubMed
Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC, et al. Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2011;22: 1382–9. 10.1681/ASN.2010111185 PubMed DOI PMC
Schiffmann R, Rapkiewicz A, Abu-Asab M, Ries M, Askari H, Tsokos M, et al. Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Arch. NIH Public Access; 2006;448: 337–43. 10.1007/s00428-005-0089-x PubMed DOI PMC
Joly DA, Grünfeld J-P. 3-Nitrotyrosine as a biomarker for vascular involvement in Fabry disease. Kidney Int. International Society of Nephrology; 2014;86: 5–7. 10.1038/ki.2014.126 PubMed DOI
Kanellis J, Kang D-H. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol. Elsevier; 2005;25: 39–42. 10.1016/j.semnephrol.2004.09.007 PubMed DOI
DeGraba T, Azhar S, Dignat-George F, Brown E, Boutière B, Altarescu G, et al. Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol. 2000;47: 229–33. Available: http://www.ncbi.nlm.nih.gov/pubmed/10665494 PubMed
Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, et al. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J. 2007;28: 1228–35. 10.1093/eurheartj/ehm153 PubMed DOI
Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81: 122–38. Available: http://www.ncbi.nlm.nih.gov/pubmed/11889412 PubMed
Bickel C, Rupprecht HJ, Blankenberg S, Rippin G, Hafner G, Daunhauer A, et al. Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease. Am J Cardiol. 2002;89: 12–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/11779515 PubMed
Huang H, Huang B, Li Y, Huang Y, Li J, Yao H, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16: 15–24. 10.1093/eurjhf/hft132 PubMed DOI
Zhu L, Wang J, Wang Y, Jia L, Sun K, Wang H, et al. Plasma Uric Acid as a Prognostic Marker in Patients With Hypertrophic Cardiomyopathy. Can J Cardiol. 2015;31: 1252–8. 10.1016/j.cjca.2015.02.018 PubMed DOI
Kim H, Shin H-W, Son J, Yoon H-J, Park H-S, Cho Y-K, et al. Uric Acid as prognostic marker in advanced nonischemic dilated cardiomyopathy: comparison with N-terminal pro B-type natriuretic peptide level. Congest Heart Fail. 16: 153–8. 10.1111/j.1751-7133.2010.00144.x PubMed DOI
Sundström J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45: 28–33. 10.1161/01.HYP.0000150784.92944.9a PubMed DOI
Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63: 102–10. 10.1002/acr.20344 PubMed DOI PMC
Iwashima Y, Horio T, Kamide K, Rakugi H, Ogihara T, Kawano Y. Uric acid, left ventricular mass index, and risk of cardiovascular disease in essential hypertension. Hypertension. 2006;47: 195–202. 10.1161/01.HYP.0000200033.14574.14 PubMed DOI
Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and risk of stroke: a systematic review and meta-analysis. Arthritis Rheum. 2009;61: 885–92. 10.1002/art.24612 PubMed DOI PMC
Johnson RJ, Nakagawa T, Jalal D, Sanchez-Lozada LG, Kang D-H, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant. 2013;28: 2221–2228. 10.1093/ndt/gft029 PubMed DOI PMC
Zoppini G, Targher G, Chonchol M, Ortalda V, Abaterusso C, Pichiri I, et al. Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care. 2012;35: 99–104. 10.2337/dc11-1346 PubMed DOI PMC
Giordano C, Karasik O, King-Morris K, Asmar A. Uric Acid as a Marker of Kidney Disease: Review of the Current Literature. Dis Markers. 2015;2015: 382918 10.1155/2015/382918 PubMed DOI PMC
Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62: 3307–15. 10.2337/db12-1814 PubMed DOI PMC
Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013;15: 175–81. 10.1007/s11906-013-0344-5 PubMed DOI PMC