Serum Bilirubin Levels and Promoter Variations in HMOX1 and UGT1A1 Genes in Patients with Fabry Disease
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28951772
PubMed Central
PMC5603749
DOI
10.1155/2017/9478946
Knihovny.cz E-resources
- MeSH
- Antioxidants metabolism MeSH
- Bilirubin blood MeSH
- Adult MeSH
- Fabry Disease blood enzymology genetics MeSH
- Glucuronosyltransferase genetics MeSH
- Heme Oxygenase-1 genetics MeSH
- Humans MeSH
- Polymorphism, Genetic MeSH
- Promoter Regions, Genetic MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Bilirubin MeSH
- Glucuronosyltransferase MeSH
- Heme Oxygenase-1 MeSH
- HMOX1 protein, human MeSH Browser
- UGT1A1 enzyme MeSH Browser
The aim of our study was to assess the possible relationships among heme oxygenase (HMOX), bilirubin UDP-glucuronosyl transferase (UGT1A1) promoter gene variations, serum bilirubin levels, and Fabry disease (FD). The study included 56 patients with FD (M : F ratio = 0.65) and 185 healthy individuals. Complete standard laboratory and clinical work-up was performed on all subjects, together with the determination of total peroxyl radical-scavenging capacity. The (GT)n and (TA)n dinucleotide variations in the HMOX1 and UGT1A1 gene promoters, respectively, were determined by DNA fragment analysis. Compared to controls, patients with FD had substantially lower serum bilirubin levels (12.0 versus 8.85 μmol/L, p = 0.003) and also total antioxidant capacity (p < 0.05), which showed a close positive relationship with serum bilirubin levels (p = 0.067) and the use of enzyme replacement therapy (p = 0.036). There was no association between HMOX1 gene promoter polymorphism and manifestation of FD. However, the presence of the TA7 allele UGT1A1 gene promoter, responsible for higher systemic bilirubin levels, was associated with a twofold lower risk of manifestation of FD (OR = 0.51, 95% CI = 0.27-0.97, p = 0.038). Markedly lower serum bilirubin levels in FD patients seem to be due to bilirubin consumption during increased oxidative stress, although UGT1A1 promoter gene polymorphism may modify the manifestation of FD as well.
See more in PubMed
Zarate Y. A., Hopkin R. J. Fabry’s disease. Lancet. 2008;372(9647):1427–1435. doi: 10.1016/S0140-6736(08)61589-5. PubMed DOI
Germain D. P. Fabry disease. Orphanet Journal of Rare Diseases. 2010;5:p. 30. doi: 10.1186/1750-1172-5-30. PubMed DOI PMC
Sheppard M. N. The heart in Fabry’s disease. Cardiovascular Pathology. 2011;20(1):8–14. doi: 10.1016/j.carpath.2009.10.003. PubMed DOI
Bodary P. F., Shen Y., Vargas F. B., et al. Alpha-galactosidase A deficiency accelerates atherosclerosis in mice with apolipoprotein E deficiency. Circulation. 2005;111(5):629–632. doi: 10.1161/01.CIR.0000154550.15963.80. PubMed DOI
Lorenzen J. M., Dietrich B., Fiedler J., et al. Pathologic endothelial response and impaired function of circulating angiogenic cells in patients with Fabry disease. Basic Research in Cardiology. 2013;108(1):p. 311. doi: 10.1007/s00395-012-0311-3. PubMed DOI
Schiffmann R., Rapkiewicz A., Abu-Asab M., et al. Pathological findings in a patient with Fabry disease who died after 2.5 years of enzyme replacement. Virchows Archives. 2006;448(3):337–343. doi: 10.1007/s00428-005-0089-x. PubMed DOI PMC
Kovarnik T., Mintz G. S., Karetova D., et al. Intravascular ultrasound assessment of coronary artery involvement in Fabry disease. Journal of Inherited Metabolic Disease. 2008;31(6):753–760. doi: 10.1007/s10545-008-0794-0. PubMed DOI
Tomberli B., Cecchi F., Sciagra R., et al. Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. European Journal of Heart Failure. 2013;15(12):1363–1373. doi: 10.1093/eurjhf/hft104. PubMed DOI
Spada M., Pagliardini S., Yasuda M., et al. High incidence of later-onset Fabry disease revealed by newborn screening. American Journal of Human Genetics. 2006;79(1):31–40. doi: 10.1086/504601. PubMed DOI PMC
Rolfs A., Bottcher T., Zschiesche M., et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet. 2005;366(9499):1794–1796. doi: 10.1016/S0140-6736(05)67635-0. PubMed DOI
Shen J. S., Meng X. L., Moore D. F., et al. Globotriaosylceramide induces oxidative stress and up-regulates cell adhesion molecule expression in Fabry disease endothelial cells. Molecular Genetics and Metabolism. 2008;95(3):163–168. doi: 10.1016/j.ymgme.2008.06.016. PubMed DOI PMC
Biancini G. B., Moura D. J., Manini P. R., et al. DNA damage in Fabry patients: an investigation of oxidative damage and repair. Mutatation Research - Genetic Toxicology and Environmental Mutagenesis. 2015;784-785:31–36. doi: 10.1016/j.mrgentox.2015.04.012. PubMed DOI
Biancini G. B., Jacques C. E., Hammerschmidt T., et al. Biomolecules damage and redox status abnormalities in Fabry patients before and during enzyme replacement therapy. Clinica Chimica Acta. 2016;461:41–46. doi: 10.1016/j.cca.2016.07.016. PubMed DOI
Biancini G. B., Vanzin C. S., Rodrigues D. B., et al. Globotriaosylceramide is correlated with oxidative stress and inflammation in Fabry patients treated with enzyme replacement therapy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2012;1822(2):226–232. doi: 10.1016/j.bbadis.2011.11.001. PubMed DOI
Moore D. F., Scott L. T., Gladwin M. T., et al. Regional cerebral hyperperfusion and nitric oxide pathway dysregulation in Fabry disease: reversal by enzyme replacement therapy. Circulation. 2001;104(13):1506–1512. doi: 10.1161/hc3801.096352. PubMed DOI
Shu L., Vivekanandan-Giri A., Pennathur S., et al. Establishing 3-nitrotyrosine as a biomarker for the vasculopathy of Fabry disease. Kidney International. 2014;86(1):58–66. doi: 10.1038/ki.2013.520. PubMed DOI PMC
Chimenti C., Scopelliti F., Vulpis E., et al. Increased oxidative stress contributes to cardiomyocyte dysfunction and death in patients with Fabry disease cardiomyopathy. Human Pathology. 2015;46(11):1760–1768. doi: 10.1016/j.humpath.2015.07.017. PubMed DOI
Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235(4792):1043–1046. doi: 10.1126/science.3029864. PubMed DOI
Frei B., Stocker R., Ames B. N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America. 1988;85:9748–9752. doi: 10.1073/pnas.85.24.9748. PubMed DOI PMC
Vitek L., Schwertner H. A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Advances in Clinical Chemistry. 2007;43:1–57. doi: 10.1016/S0065-2423(06)43001-8. PubMed DOI
Vitek L., Jirsa M., Brodanova M., et al. Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis. 2002;160(2):449–456. doi: 10.1016/S0021-9150(01)00601-3. PubMed DOI
Exner M., Minar E., Wagner O., Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radical Biology and Medicine. 2004;37(8):1097–1104. doi: 10.1016/j.freeradbiomed.2004.07.008. PubMed DOI
Schwertner H. A., Vitek L. Gilbert syndrome, UGT1A1∗28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis. 2008;198(1):1–11. doi: 10.1016/j.atherosclerosis.2008.01.001. PubMed DOI
Vitek L., Ostrow J. D. Bilirubin chemistry and metabolism; harmful and protective aspects. Current Pharmeceutical Design. 2009;15(25):2869–2883. doi: 10.2174/138161209789058237. PubMed DOI
Biegstraaten M., Arngrimsson R., Barbey F., et al. Recommendations for initiation and cessation of enzyme replacement therapy in patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet Journal of Rare Diseases. 2015;10:p. 36. doi: 10.1186/s13023-015-0253-6. PubMed DOI PMC
Iuliano L., Piccheri C., Coppola I., Pratico D., Micheletta F., Violi F. Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochimica et Biophysica Acta (BBA)-General Subjects. 2000;1474(2):177–182. doi: 10.1016/S0304-4165(00)00017-9. PubMed DOI
Jiraskova A., Lenicek M., Vitek L. Simultaneous genotyping of microsatellite variations in HMOX1 and UGT1A1 genes using multicolored capillary electrophoresis. Clinical Biochemistry. 2010;43(7-8):697–699. doi: 10.1016/j.clinbiochem.2010.01.006. PubMed DOI
Wagner K. H., Wallner M., Molzer C., et al. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clinical Science (London) 2015;129(1):1–25. doi: 10.1042/CS20140566. PubMed DOI
Moore D. F., Ye F., Brennan M. L., et al. Ascorbate decreases Fabry cerebral hyperperfusion suggesting a reactive oxygen species abnormality: an arterial spin tagging study. Journal of Magnetic Resonanace and Imaging. 2004;20(4):674–683. doi: 10.1002/jmri.20162. PubMed DOI
Arning L. The search for modifier genes in Huntington disease - multifactorial aspects of a monogenic disorder. Molecular and Cellular Probes. 2016;30(6):404–409. doi: 10.1016/j.mcp.2016.06.006. PubMed DOI
Altarescu G., Moore D. F., Schiffmann R. Effect of genetic modifiers on cerebral lesions in Fabry disease. Neurology. 2005;64(12):2148–2150. doi: 10.1212/01.WNL.0000166000.24321.4F. PubMed DOI
Simoncini C., Chico L., Concolino D., et al. Mitochondrial DNA haplogroups may influence Fabry disease phenotype. Neuroscience Letters. 2016;629:58–61. doi: 10.1016/j.neulet.2016.06.051. PubMed DOI
Moore D. F., Gelderman M. P., Ferreira P. A., et al. Genomic abnormalities of the murine model of Fabry disease after disease-related perturbation, a systems biology approach. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(19):8065–8070. doi: 10.1073/pnas.0701991104. PubMed DOI PMC
Mazzone G. L., Rigato I., Tiribelli C. Unconjugated bilirubin modulates nitric oxide production via iNOS regulation. Bioscience Trends. 2010;4(5):244–248. PubMed
Mazzone G. L., Rigato I., Ostrow J. D., et al. Bilirubin inhibits the TNF alpha-related induction of three endothelial adhesion molecules. Biochemical and Biophysical Research Communications. 2009;386(2):338–344. doi: 10.1016/j.bbrc.2009.06.029. PubMed DOI
Mazzone G. L., Rigato I., Ostrow J. D., Tiribelli C. Bilirubin effect on endothelial adhesion molecules expression is mediated by the NF-kappaB signaling pathway. Bioscience Trends. 2009;3(4):151–157. PubMed
De Francesco P. N., Mucci J. M., Ceci R., Fossati C. A., Rozenfeld P. A. Fabry disease peripheral blood immune cells release inflammatory cytokines: role of globotriaosylceramide. Molecular Genetics and Metabolism. 2013;109(1):93–99. doi: 10.1016/j.ymgme.2013.02.003. PubMed DOI
Kadl A., Pontiller J., Exner M., Leitinger N. Single bolus injection of bilirubin improves the clinical outcome in a mouse model of endotoxemia. Shock. 2007;28(5):582–588. doi: 10.1097/shk.0b013e31804d41dd. PubMed DOI
Wallner M., Bulmer A. C., Molzer C., et al. Haem catabolism: a novel modulator of inflammation in Gilbert’s syndrome. European Journal of Clinical Investigation. 2013;43(9):912–919. doi: 10.1111/eci.12120. PubMed DOI
Rob D., Marek J., Dostalova G., Golan L., Linhart A. Uric acid as a marker of mortality and morbidity in Fabry disease. PLoS One. 2016;11(11, article e0166290) doi: 10.1371/journal.pone.0166290. PubMed DOI PMC
McCarty M. F. “Iatrogenic Gilbert syndrome” - a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Medical Hypotheses. 2007;69(5):974–994. doi: 10.1016/j.mehy.2006.12.069. PubMed DOI
The physiology of bilirubin: health and disease equilibrium