Long-Term Evaluation of Biomarkers in the Czech Cohort of Gaucher Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO-VFN-64165/2012
Ministry of Health
PubMed
37833892
PubMed Central
PMC10572410
DOI
10.3390/ijms241914440
PII: ijms241914440
Knihovny.cz E-zdroje
- Klíčová slova
- chitotriosidase, glucosylsphingosine, long term therapy, lyso-Gb1, type 1 Gaucher disease,
- MeSH
- biologické markery MeSH
- enzymová substituční terapie MeSH
- Gaucherova nemoc * diagnóza farmakoterapie MeSH
- lidé MeSH
- počet trombocytů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- biologické markery MeSH
A personalized treatment decision for Gaucher disease (GD) patients should be based on relevant markers that are specific to GD, play a direct role in GD pathophysiology, exhibit low genetic variation, reflect the therapy, and can be used for all patients. Thirty-four GD patients treated with enzyme replacement therapy (ERT) or substrate reduction therapy (SRT) were analyzed for platelet count, chitotriosidase, and tartrate-resistant acid phosphatase activity in plasma samples, and quantitative measurement of Lyso-Gb1 was performed in dried blood spots. In our ERT and SRT study cohorts, plasma lyso-GL1 correlated significantly with chito-triosidase (ERT: r = 0.55, p < 0.001; SRT: r = 0.83, p < 0.001) and TRAP (ERT: r = 0.34, p < 0.001; SRT: r = 0.88, p < 0.001), irrespective of treatment method. A platelet count increase was associated with a Lyso-Gb1 decrease in both treatment groups (ERT: p = 0.021; SRT: p = 0.028). The association of Lyso-Gb1 with evaluated markers was stronger in the SRT cohort. Our results indicate that ERT and SRT in combination or in a switch manner could offer the potential of individual drug effectiveness for particular GD symptoms. Combination of the key biomarker of GD, Lyso-Gb1, with other biomarkers can offer improved response assessment to long-term therapy.
Zobrazit více v PubMed
Kaplan P., Andersson H.C., Kacena K.A., Yee J.D. The clinical and demographic characteristics of nonneuronopathic Gaucher disease in 887 children at diagnosis. Arch. Pediatr. Adolescent Med. 2006;160:603–608. doi: 10.1001/archpedi.160.6.603. PubMed DOI
Murugesan V., Chuang W.L., Liu J., Lischuk A., Kacena K., Lin H., Pastores G.M., Yang R., Keutzer J., Zhang K., et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am. J. Hematol. 2016;91:1082–1089. doi: 10.1002/ajh.24491. PubMed DOI PMC
Stirnemann J., Belmatoug N., Camou F., Serratrice C., Froissart R., Caillaud C., Levade T., Astudillo L., Serratrice J., Brassier A., et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017;18:441. doi: 10.3390/ijms18020441. PubMed DOI PMC
Thaler A., Gurevich T., Bar Shira A., Gana Weisz M., Ash E., Shiner T., Orr-Urtreger A., Giladi N., Mirelman A. A “dose” effect of mutations in the GBA gene on Parkinson’s disease phenotype. Park. Relat. Disord. 2017;36:47–51. doi: 10.1016/j.parkreldis.2016.12.014. PubMed DOI
Blauwendraat C., Tayebi N., Woo E.G., Lopez G., Fierro L., Toffoli M., Limbachiya N., Hughes D., Pitz V., Patel D., et al. Polygenic Parkinson’s Disease Genetic Risk Score as Risk Modifier of Parkinsonism in Gaucher Disease. Mov. Disord. 2023;38:899–903. doi: 10.1002/mds.29342. PubMed DOI PMC
Roshan Lal T., Sidransky E. The Spectrum of Neurological Manifestations Associated with Gaucher Disease. Diseases. 2017;5:10. doi: 10.3390/diseases5010010. PubMed DOI PMC
Poupetová H., Ledvinová J., Berná L., Dvoráková L., Kozich V., Elleder M. The birth prevalence of lysosomal storage disorders in the Czech Republic: Comparison with data in different populations. J. Inherit. Metab. Dis. 2010;33:387–396. doi: 10.1007/s10545-010-9093-7. PubMed DOI PMC
Zimran A., Gelbart T., Westwood B., Grabowski G.A., Beutler E. High frequency of the Gaucher disease mutation at nucleotide 1226 among Ashkenazi Jews. Am. J. Hum. Genet. 1991;49:855–859. PubMed PMC
Charrow J., Fraga C., Gu X., Ida H., Longo N., Lukina E., Nonino A., Gaemers S.J.M., Jouvin M.H., Li J., et al. Once- versus twice-daily dosing of eliglustat in adults with Gaucher disease type 1: The Phase 3, randomized, double-blind EDGE trial. Mol. Genet. Metab. 2018;123:347–356. doi: 10.1016/j.ymgme.2017.12.001. PubMed DOI
Mistry P.K., Belmatoug N., von Dahl S., Giugliani R. Understanding the natural history of Gaucher disease. Am. J. Hematol. 2015;90((Suppl. 1)):S6–S11. doi: 10.1002/ajh.24055. PubMed DOI
Fairley C., Zimran A., Phillips M., Cizmarik M., Yee J., Weinreb N., Packman S. Phenotypic heterogeneity of N370S homozygotes with type I Gaucher disease: An analysis of 798 patients from the ICGG Gaucher Registry. J. Inherit. Metab. Dis. 2008;31:738–744. doi: 10.1007/s10545-008-0868-z. PubMed DOI
Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Investig. 1994;93:1288–1292. doi: 10.1172/JCI117084. PubMed DOI PMC
Giraldo P., López de Frutos L., Cebolla J.J. Biomarker combination is necessary for the assessment of Gaucher disease? Ann. Transl. Med. 2018;6:S81. doi: 10.21037/atm.2018.10.69. PubMed DOI PMC
Boot R.G., Renkema G.H., Verhoek M., Strijland A., Bliek J., de Meulemeester T.M., Mannens M.M., Aerts J.M. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J. Biol. Chem. 1998;273:25680–25685. doi: 10.1074/jbc.273.40.25680. PubMed DOI
Stiles A.R., Huggins E., Fierro L., Jung S.H., Balwani M., Kishnani P.S. The role of glucosylsphingosine as an early indicator of disease progression in early symptomatic type 1 Gaucher disease. Mol. Genet. Metab. Rep. 2021;27:100729. doi: 10.1016/j.ymgmr.2021.100729. PubMed DOI PMC
Nilsson O., Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J. Neurochem. 1982;39:709–718. doi: 10.1111/j.1471-4159.1982.tb07950.x. PubMed DOI
Nair S., Branagan A.R., Liu J., Boddupalli C.S., Mistry P.K., Dhodapkar M.V. Clonal Immunoglobulin against Lysolipids in the Origin of Myeloma. N. Engl. J. Med. 2016;374:555–561. doi: 10.1056/NEJMoa1508808. PubMed DOI PMC
Dekker N., van Dussen L., Hollak C.E., Overkleeft H., Scheij S., Ghauharali K., van Breemen M.J., Ferraz M.J., Groener J.E., Maas M., et al. Elevated plasma glucosylsphingosine in Gaucher disease: Relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118:e118–e127. doi: 10.1182/blood-2011-05-352971. PubMed DOI PMC
Cabrera-Salazar M.A., O’Rourke E., Henderson N., Wessel H., Barranger J.A. Correlation of surrogate markers of Gaucher disease. Implications for long-term follow up of enzyme replacement therapy. Clin. Chim. Acta. 2004;344:101–107. doi: 10.1016/j.cccn.2004.02.018. PubMed DOI
Aerts J.M., Kallemeijn W.W., Wegdam W., Joao Ferraz M., van Breemen M.J., Dekker N., Kramer G., Poorthuis B.J., Groener J.E., Cox-Brinkman J., et al. Biomarkers in the diagnosis of lysosomal storage disorders: Proteins, lipids, and inhibodies. J. Inherit. Metab. Dis. 2011;34:605–619. doi: 10.1007/s10545-011-9308-6. PubMed DOI PMC
Revel-Vilk S., Fuller M., Zimran A. Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review. Int. J. Mol. Sci. 2020;21:7159. doi: 10.3390/ijms21197159. PubMed DOI PMC
Hodaňová K., Hřebíček M., Červenková M., Mrázová L., Vepřeková L., Zeman J. Analysis of the beta-glucocerebrosidase gene in Czech and Slovak Gaucher patients: Mutation profile and description of six novel mutant alleles. Blood Cells, Mol. Dis. 1999;25:287–298. doi: 10.1006/bcmd.1999.0256. PubMed DOI
Rolfs A., Giese A.K., Grittner U., Mascher D., Elstein D., Zimran A., Böttcher T., Lukas J., Hübner R., Gölnitz U., et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients. PLoS ONE. 2013;8:e79732. doi: 10.1371/journal.pone.0079732. PubMed DOI PMC
Dao J., Goker-Alpan O., Limgala R. Evaluation of disease burden and therapy modifications using glucosylsphingosine (lyso-GL1) in Gaucher disease. Mol. Genet. Metab. 2019;126:S45. doi: 10.1016/j.ymgme.2018.12.097. DOI
Hurvitz N., Dinur T., Becker-Cohen M., Cozma C., Hovakimyan M., Oppermann S., Demuth L., Rolfs A., Abramov A., Zimran A., et al. Glucosylsphingosine (lyso-Gb1) as a Biomarker for Monitoring Treated and Untreated Children with Gaucher Disease. Int. J. Mol. Sci. 2019;20:3033. doi: 10.3390/ijms20123033. PubMed DOI PMC
Peterschmitt J.M., Foster M., Zhang K., Ji A., Cox G. Correlations between glucosylsphingosine (lyso-GL-1) and baseline disease severity as well as response to treatment in two clinical trials of eliglustat in treatment-naïve adults with type 1 Gaucher disease. Mol. Genet. Metab. 2019;126:S117. doi: 10.1016/j.ymgme.2018.12.297. DOI
Hollak C.E., Maas M., Aerts J.M. Clinically relevant therapeutic endpoints in type I Gaucher disease. J. Inherit. Metab. Dis. 2001;24:97–105. doi: 10.1023/A:1012492429191. PubMed DOI
Deegan P.B., Moran M.T., McFarlane I., Schofield J.P., Boot R.G., Aerts J.M., Cox T.M. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cell Mol. Dis. 2005;35:259–267. doi: 10.1016/j.bcmd.2005.05.005. PubMed DOI
Cox T., Lachmann R., Hollak C., Aerts J., van Weely S., Hrebicek M., Platt F., Butters T., Dwek R., Moyses C., et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet. 2000;355:1481–1485. doi: 10.1016/S0140-6736(00)02161-9. PubMed DOI
Zimran A., Altarescu G., Philips M., Attias D., Jmoudiak M., Deeb M., Wang N., Bhirangi K., Cohn G.M., Elstein D. Phase 1/2 and extension study of velaglucerase alfa replacement therapy in adults with type 1 Gaucher disease: 48-month experience. Blood. 2010;115:4651–4656. doi: 10.1182/blood-2010-02-268649. PubMed DOI
van Dussen L., Hendriks E.J., Groener J.E., Boot R.G., Hollak C.E., Aerts J.M. Value of plasma chitotriosidase to assess non-neuronopathic Gaucher disease severity and progression in the era of enzyme replacement therapy. J. Inherit. Metab. Dis. 2014;37:991–1001. doi: 10.1007/s10545-014-9711-x. PubMed DOI
Raskovalova T., Deegan P.B., Yang R., Pavlova E., Stirnemann J., Labarere J., Zimran A., Mistry P.K., Berger M. Plasma chitotriosidase activity versus CCL18 level for assessing type I Gaucher disease severity: Protocol for a systematic review with meta-analysis of individual participant data. Syst. Rev. 2017;6:87. doi: 10.1186/s13643-017-0483-x. PubMed DOI PMC
Vigan M., Stirnemann J., Caillaud C., Froissart R., Boutten A., Fantin B., Belmatoug N., Mentré F. Modeling changes in biomarkers in Gaucher disease patients receiving enzyme replacement therapy using a pathophysiological model. Orphanet J. Rare Dis. 2014;9:95. doi: 10.1186/1750-1172-9-95. PubMed DOI PMC
Ben Turkia H., Riahi I., Azzouz H., Ladab S., Cherif W., Ben Chehida A., Abdelmoula M.S., Caillaud C., Chemli J., Abdelhak S., et al. Phénotype clinique et spectre mutationnel de la maladie de Gaucher pédiatrique en Tunisie. Tunis. Med. 2010;88:158–162. PubMed
Malaguarnera L., Simpore J., Prodi D.A., Angius A., Sassu A., Persico I., Barone R., Musumeci S. A 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: Role of parasitic diseases and environmental conditions. Genes. Immun. 2003;4:570–574. doi: 10.1038/sj.gene.6364025. PubMed DOI
Grace M.E., Balwani M., Nazarenko I., Prakash-Cheng A., Desnick R.J. Type 1 Gaucher disease: Null and hypomorphic novel chitotriosidase mutations—Implications for diagnosis and therapeutic monitoring. Hum. Mutat. 2007;28:866–873. doi: 10.1002/humu.20524. PubMed DOI
Lee P., Waalen J., Crain K., Smargon A., Beutler E. Human chitotriosidase polymorphisms G354R and A442V associated with reduced enzyme activity. Blood Cells Mol. Dis. 2007;39:353–360. doi: 10.1016/j.bcmd.2007.06.013. PubMed DOI PMC
Bussink A.P., Verhoek M., Vreede J., Ghauharali-van der Vlugt K., Donker-Koopman W.E., Sprenger R.R., Hollak C.E., Aerts J.M., Boot R.G. Common G102S polymorphism in chitotriosidase differentially affects activity towards 4-methylumbelliferyl substrates. FEBS J. 2009;276:5678–5688. doi: 10.1111/j.1742-4658.2009.07259.x. PubMed DOI
Arkadir D., Dinur T., Revel-Vilk S., Becker Cohen M., Cozma C., Hovakimyan M., Eichler S., Rolfs A., Zimran A. Glucosylsphingosine is a reliable response biomarker in Gaucher disease. Am. J. Hematol. 2018;93:E140–E142. doi: 10.1002/ajh.25074. PubMed DOI
Elstein D., Mellgard B., Dinh Q., Lan L., Qiu Y., Cozma C., Eichler S., Bottcher T., Zimran A. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naive and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: Data from phase 3 clinical trials. Mol. Genet. Metab. 2017;122:113–120. doi: 10.1016/j.ymgme.2017.08.005. PubMed DOI
Lukina E., Watman N., Dragosky M., Lau H., Avila Arreguin E., Rosenbaum H., Zimran A., Foster M.C., Gaemers S.J.M., Peterschmitt M.J. Outcomes after 8 years of eliglustat therapy for Gaucher disease type 1: Final results from the Phase 2 trial. Am. J. Hematol. 2019;94:29–38. doi: 10.1002/ajh.25300. PubMed DOI PMC
Magalhaes J., Pinto R., Lemos M., Sa Miranda M.C., Poenaru L. Age dependency of serum acid phosphatase in controls and Gaucher patients. Enzyme. 1984;32:95–99. doi: 10.1159/000469457. PubMed DOI
Sims K.B., Pastores G.M., Weinreb N.J., Barranger B., Rosenbllom B.E., Packman S., Kaplan P., Mankin H., Xavier R., Angell J., et al. Improvement of bone disease by imiglucerase (Cerezyme) therapy in patients with skeletal manifestations of type 1 Gaucher disease: Results of a 48-month longitudinal cohort study. Clin. Genet. 2008;73:430–440. doi: 10.1111/j.1399-0004.2008.00978.x. PubMed DOI PMC
Alfonso P., Pampin S., Estrada J., Rodriguez-Rey J.C., Giraldo P., Sancho J., Pocovi M. Miglustat (NB-DNJ) works as a chaperone for mutated acid b-glucosidase in cells transfected with several Gaucher disease mutations. Blood Cells Mol. Dis. 2005;35:268–276. doi: 10.1016/j.bcmd.2005.05.007. PubMed DOI
Wraith J.E., Imrie J. New therapies in the management of Niemann-Pick type C disease: Clinical utility of miglustat. Ther. Clin. Risk Manag. 2009;5:877–887. doi: 10.2147/TCRM.S5777. PubMed DOI PMC
Abe A., Radin N.S., Shayman J.A., Wotring L.L., Zipkin R.E., Sivakumar R., Ruggieri J.M., Carson K.G., Ganem B. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J. Lipid Res. 1995;36:611–621. doi: 10.1016/S0022-2275(20)39895-3. PubMed DOI
Leng H., Zhang H., Li L., Zhang S., Wang Y., Ersek A., Morris E., Sezgin E., Lee Y.H., Li Y., et al. The glycosphingolipid inhibitor eliglustat inhibits autophagy in osteoclasts to increase bone mass and reduce myeloma bone disease. bioRxiv. 2021 doi: 10.1101/2021.02.05.429906. DOI
Stirnemann J., Belmatoug N., Vincent C., Fain O., Fantin B., Mentré F. Bone events and evolution of biologic markers in Gaucher disease before and during treatment. Arthritis Res. Ther. 2010;12:R156. doi: 10.1186/ar3111. PubMed DOI PMC
van Dussen L., Lips P., Everts V.E., Bravenboer N., Jansen I.D.C., Groener J.E.M., Maas M., Blokland J.A.K., Aerts M.F.G., Hollak C.E. Markers of bone turnover in Gaucher disease: Modeling the evolution of bone disease. J. Clin. Endocrinol. Metab. 2011;96:2194–2205. doi: 10.1210/jc.2011-0162. PubMed DOI
Giraldo P., Latre P., Alfonso P., Acedo A., Alonso D., Barez A., Corrales A., Franco R., Roldan V., Serrano S., et al. Short-term effect of miglustat in every day clinical use in treatment-naïve or previously treated patients with type 1 Gaucher’s disease. Haematologica. 2006;91:703–706. PubMed
Mistry P.K., Davies S., Corfield A., Dixon A.K., Cox T.M. Successful treatment of bone marrow failure in Gaucher’s disease with low-dose modified glucocerebrosidase. Q. J. Med. 1992;83:541–546. PubMed
Elstein D., Altarescu G., Maayan H., Phillips M., Abrahamov A., Hadas-Halpern I., Tiomkin M., Zimran A. Booster-effect with velaglucerase alfa in patients with Gaucher disease switched from long-term imiglucerase therapy: Early Access Program results from Jerusalem. Blood Cells Mol. Dis. 2012;48:45–50. doi: 10.1016/j.bcmd.2011.09.009. PubMed DOI
Ha C.I., DeArmey S., Cope H., Rairikar M., Kishnani P.S. Treatment of profound thrombocytopenia in a patient with Gaucher disease type 1: Is there a role for substrate reduction therapy. Mol. Genet. Metab. Rep. 2017;12:82–84. doi: 10.1016/j.ymgmr.2017.06.003. PubMed DOI PMC
Fuller M., Szer J., Stark S., Fletcher J.M. Rapid, single-phase extraction of glucosylsphingosine from plasma: A universal screening and monitoring tool. Clin. Chim. Acta. 2015;450:6–10. doi: 10.1016/j.cca.2015.07.026. PubMed DOI
Franco M., Reihani N., Marin M., De Person M., Billette de Villemeur T., Rose C., Colin Y., Moussa F., Belmatoug N., Le Van Kim C. Effect of velaglucerase alfa enzyme replacement therapy on red blood cell properties in Gaucher disease. Am. J. Hematol. 2017;92:E561–E563. doi: 10.1002/ajh.24816. PubMed DOI
Tylki-Szymańska A., Szymańska-Rożek P., Hasiński P., Ługowska A. Plasma chitotriosidase activity versus plasma glucosylsphingosine in wide spectrum of Gaucher disease phenotypes—A statistical insight. Mol. Genet. Metab. 2018;123:495–500. doi: 10.1016/j.ymgme.2018.02.004. PubMed DOI
Cohen J., Cohen P., West S.G., Aiken L.S. Applied Multiple Regression/Correlation Analysis for the Behavioural Sciences. 3rd ed. Lawrence Earlbaum Associates; Mahwah, NJ, USA: 2003.