Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
Q34
PROGRES, Charles University - International
CZ.02.1.01/0.0/0.0/17_048/0007280
Application of Modern Technologies in Medicine and Industry - International
PubMed
31197428
PubMed Central
PMC7306020
DOI
10.1007/s00192-019-03997-8
PII: 10.1007/s00192-019-03997-8
Knihovny.cz E-resources
- Keywords
- FEM modeling, Levator ani muscle trauma, Ogden material model, Persistent occiput posterior position, Vaginal delivery,
- MeSH
- Finite Element Analysis MeSH
- Labor Presentation * MeSH
- Pelvic Floor diagnostic imaging MeSH
- Fetus * MeSH
- Swine MeSH
- Pregnancy MeSH
- Delivery, Obstetric MeSH
- Animals MeSH
- Check Tag
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION AND HYPOTHESIS: Objective of this study was to develop an MRI-based finite element model and simulate a childbirth considering the fetal head position in a persistent occiput posterior position. METHODS: The model involves the pelvis, fetal head and soft tissues including the levator ani and obturator muscles simulated by the hyperelastic nonlinear Ogden material model. The uniaxial test was measured using pig samples of the levator to determine the material constants. Vaginal deliveries considering two positions of the fetal head were simulated: persistent occiput posterior position and uncomplicated occiput anterior position. The von Mises stress distribution was analyzed. RESULTS: The material constants of the hyperelastic Ogden model were measured for the samples of pig levator ani. The mean values of Ogden parameters were calculated as: μ1 = 8.2 ± 8.9 GPa; μ2 = 21.6 ± 17.3 GPa; α1 = 0.1803 ± 0.1299; α2 = 15.112 ± 3.1704. The results show the significant increase of the von Mises stress in the levator muscle for the case of a persistent occiput posterior position. For the optimal head position, the maximum stress was found in the anteromedial levator portion at station +8 (mean: 44.53 MPa). For the persistent occiput posterior position, the maximum was detected in the distal posteromedial levator portion at station +6 (mean: 120.28 MPa). CONCLUSIONS: The fetal head position during vaginal delivery significantly affects the stress distribution in the levator muscle. Considering the persistent occiput posterior position, the stress increases evenly 3.6 times compared with the optimal head position.
3rd Medical Faculty Charles University Ruska 2411 87 Praha Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University Praha Czech Republic
Department of Obstetrics and Gynecology University Hospital Plzeň Czech Republic
Faculty of Medicine in Pilsen Charles University Lidická 1 Plzeň Czech Republic
Institute for the Care of Mother and Child Podolské nábřeží 157 14700 Praha Czech Republic
New Technologies Research Centre University of West Bohemia Univerzitní 22 Plzeň Czech Republic
See more in PubMed
De Lancey JO, Kearney R, Chou Q, Speights S, Binno S. The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet Gynecol. 2003;101:46–53. PubMed PMC
Dietz HP, Janzarone V. Levator trauma after vaginal delivery. Obstet Gynecol. 2005;106:707–712. doi: 10.1097/01.AOG.0000178779.62181.01. PubMed DOI
Schwertner-Tiepelmann N, Thakar R, Sultan AH, Tunn R. Obstetric levator ani muscle injuries: current status. Ultrasound Obstet Gynecol. 2012;39:372–383. doi: 10.1002/uog.11080. PubMed DOI
Handa VL, Blomquist JL, Roem J, Muñoz A, Dietz HP. Levator morphology and strength after obstetric avulsion of the levator ani muscle. Female Pelvic Med Reconstr Surg. 2018. 10.1097/SPV.0000000000000641. PubMed PMC
Jansova M, Kalis V, Rusavy Z, Zemcik R, Lobovsky L, Laine K. Modelling manual perineal protection during vaginal delivery. Int Urogynecol J. 2014;25:65–71. doi: 10.1007/s00192-013-2164-1. PubMed DOI
Lien KC, Morgan DM, DeLancey JO. Pudendal nerve stretch during vaginal birth: a 3D computer simulation. Am J Obstet Gynecol. 2005;192:1669–1676. doi: 10.1016/j.ajog.2005.01.032. PubMed DOI
Mant J, Painter R, Vessey M. Epidemiology of genital prolapse: observations from the Oxford family planning association study. Brit J Obstet Gynecol. 1997;104:579–585. doi: 10.1111/j.1471-0528.1997.tb11536.x. PubMed DOI
Cheng YW, Shaffer BL, Caughey AB. The association between persistent occiput posterior position and neonatal outcomes. Obstet Gynecol. 2006;107:837–844. doi: 10.1097/01.AOG.0000206217.07883.a2. PubMed DOI
Akmal S, Tsoi E, Howard R, Osei E, Nicolaides KH. Investigation of occiput posterior delivery by intrapartum sonography. Ultrasound Obstet Gynecol. 2004;24:425–428. doi: 10.1002/uog.1064. PubMed DOI
Simkin P. The fetal occiput posterior position: state of the science and a new perspective. Birth. 2010;37:61–67. doi: 10.1111/j.1523-536X.2009.00380.x. PubMed DOI
Li X, Kruger JA, Nash MP, Nielsen PM. Anisotropic effects of the LA muscle during childbirth. Biomech Model Mechanobiol. 2011;10:485–494. doi: 10.1007/s10237-010-0249-z. PubMed DOI
Ashton-Miller JA, DeLancey OL. On the biomechanics of vaginal birth and common sequelae. Annu Rev Biomed Eng. 2009;11:163–176. doi: 10.1146/annurev-bioeng-061008-124823. PubMed DOI PMC
Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ. Quantity and distribution of LA stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008;199:198.e1–198.e5. doi: 10.1016/j.ajog.2008.04.027. PubMed DOI
Lien KC, DeLancey JO, Ashton-Miller JA. Biomechanical analysis of the efficacy of patterns of maternal effort on second-stage progress. Obstet Gynecol. 2009;113:873–880. doi: 10.1097/AOG.0b013e31819c82e1. PubMed DOI PMC
Nagle AS, Barker A, Kleeman SD, Haridas B. Passive biomechanical properties of human cadaveric levator ani muscle at low strains. J Biomech. 2014;47:583–586. doi: 10.1016/j.jbiomech.2013.11.033. PubMed DOI
Krofta L, Havelkova L, Urbankova I, Krcmar M, Hyncik L, Feyereisl J. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. Int Urogynecol J. 2017;28:275–284. doi: 10.1007/s00192-016-3126-1. PubMed DOI PMC
Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech. 2013;46:1477–1488. doi: 10.1016/j.jbiomech.2013.03.022. PubMed DOI
Tsukerman I, Plaks A. Comparison of accuracy criteria for approximation of conservative fields in tetrahedra. IEEE Trans Magn. 1998;34:3252–3255. doi: 10.1109/20.717763. DOI
Quenneville CE, Dunning CE. Development of a finite element model of the tibia for short-duration high-force axial impact loading. CMBBE. 2011;14:205–212. PubMed
Klinger BM, Shewchuck JR. Aggressive tetrahedral mesh improvement. 16th International Meshing Roundtable. Springer-Verlag; 2007. p. 3–23.
Li ZH, Reed MP, Rupp JD, Hoff CN, Zhang J, Cheng B. Development, validation and application of a parametric pediatric head finite element model for impact simulations. Ann. Biomed Eng. 2011;39:2984–2997. doi: 10.1007/s10439-011-0409-z. PubMed DOI
Ray MH, Mongiardini M, Plaxico CA, Anghileri M. Recommended procedures for verification and validation of computer simulations used for roadside safety applications. National Cooperative Highway Research Program (NCHRP) Project 22–24. Final Report, available at. 2010http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w179.pdf. Accessed 15 January 2012
Ogden RW, Saxxomandi G, Sgura I. Fitting hyperelastic models to experimental data. Comput Mech. 2004;34:484–502. doi: 10.1007/s00466-004-0593-y. DOI
Moon DK, Woo SL-Y, Takakura Y, Gabriel MT, Abramowitch SD. The effects of refreezing on the viscoelastic and tensile properties of ligaments. J Biomech. 2006;39:1153–1157. doi: 10.1016/j.jbiomech.2005.02.012. PubMed DOI
Jing D. Experimental and theoretical biomechanical analysis of the second stage of labor, PhD Thesis. University of Michigan; 2010.
Hsu Y, Chen L, Huebner M, Asthon-Miller JA, DeLancey JO. Quantification of levator ani cross-sectional area differences between women with and those without prolapse. Obstet Gynecol. 2006;108:879–883. doi: 10.1097/01.AOG.0000233153.75175.34. PubMed DOI
Kearney R, Sawhney R, DeLancey JO. Levator ani muscle anatomy evaluated by origin-insertion pairs. Obstet Gynecol. 2004;104:168–173. doi: 10.1097/01.AOG.0000128906.61529.6b. PubMed DOI PMC
Svabik K, Shek KL, Dietz HP. How much does the levator hiatus have to stretch during childbirth? BJOG Int J Obstet Gynaecol. 2009;116:1657–1662. doi: 10.1111/j.1471-0528.2009.02321.x. PubMed DOI
Jing D, Ashton-Miller JA, DeLancey JO. A subject-specific anisotropic vicso-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45:445–460. doi: 10.1016/j.jbiomech.2011.12.002. PubMed DOI PMC
Ghi T, Maroni E, Youssef A, Morselli-Labate AM, Paccapello A, Montaguti A, Rizzo N, Pilu G. Sonographic pattern of fetal head descent: relationship with duration of active second stage of labor and occiput position at delivery. Ultrasound Obstet Gynecol. 2014;44:82–89. doi: 10.1002/uog.13324. PubMed DOI
Silva MET, Oliveira DA, Roza TH, Brandao S, Parente MPL, Mascarenhas T, Natal Jorge RM. Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. J Biomech. 2015;48:1600–1605. doi: 10.1016/j.jbiomech.2015.02.032. PubMed DOI
Feasibility and safety of antepartum tactile imaging