Feasibility and safety of antepartum tactile imaging
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R43 HD095223
NICHD NIH HHS - United States
R43HD095223
NICHD NIH HHS - United States
PubMed
33068133
PubMed Central
PMC8295083
DOI
10.1007/s00192-020-04552-6
PII: 10.1007/s00192-020-04552-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biomechanics of parturition, Elastography, Finite element model, Perineal elasticity, Tactile imaging,
- MeSH
- dospělí MeSH
- elastografie * MeSH
- lidé MeSH
- mladý dospělý MeSH
- pánevní dno * diagnostické zobrazování MeSH
- perineum diagnostické zobrazování MeSH
- porod MeSH
- studie proveditelnosti MeSH
- těhotenství MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION AND HYPOTHESIS: Quantitative characterization of the birth canal and critical structures before delivery may provide risk assessment for maternal birth injury. The objective of this study was to explore imaging capability of an antepartum tactile imaging (ATI) probe. METHODS: Twenty randomly selected women older than 21 years with completed 35th week of pregnancy and a premise of vaginal delivery were enrolled in the feasibility study. The biomechanical data were acquired using the ATI probe with a double-curved surface, shaped according to the fetal skull and equipped with 168 tactile sensors and an electromagnetic motion tracking sensor. Software package COMSOL Multiphysics was used for finite element modeling. Subjects were asked for assessment of pain and comfort levels experienced during the ATI examination. RESULTS: All 20 nulliparous women were successfully examined with the ATI. Mean age was 27.8 ± 4.1 years, BMI 30.7 ± 5.8, and week of pregnancy 38.8 ± 1.4. Biomechanical mapping with the ATI allowed real-time observation of the probe location, applied load to the vaginal walls, and a 3D tactile image composition. The nonlinear finite element model describing the stress-strain relationship of the pelvic tissue was developed and used for calculation of Young's modulus (E). Average perineal elastic modulus was 11.1 ± 4.3 kPa, levator ani 4.8 ± 2.4 kPa, and symphysis-perineum distance was 30.1 ± 6.9 mm. The pain assessment level for the ATI examination was 2.1 ± 0.8 (scale 1-4); the comfort level was 2.05 ± 0.69 (scale 1-3). CONCLUSIONS: The antepartum examination with the ATI probe allowed measurement of the tissue elasticity and anatomical distances. The pain level was low and the comfort level was comparable with manual palpation.
Advanced Tactile Imaging Trenton NJ USA
Biomedical Center Faculty of Medicine in Plzen Charles University Pilsen Czech Republic
Department of Gynecology and Obstetrics University Hospital in Pilsen Pilsen Czech Republic
Zobrazit více v PubMed
Smith LA, Price N, Simonite V, Burns EE. Incidence of and risk factors for perineal trauma: a prospective observational study. BMC Pregnancy Childbirth. 2013;13:59. doi: 10.1186/1471-2393-13-59. PubMed DOI PMC
Sleep J, Grant A, Garcia J, Elbourne D, Spencer J, Chalmers I. West Berkshire perineal management trial. Br Med J (Clin Res Ed) 1984;289(6445):587. doi: 10.1136/bmj.289.6445.587. PubMed DOI PMC
McCandlish R, Bowler U, van Asten H, Berridge G, Winter C, Sames L, Garcia J, Renfrew M, Elbourne D. A randomised controlled trial of care of the perineum during second stage of normal labour. Br J Obstet Gynaecol. 1998;105(12):1262–1272. doi: 10.1111/j.1471-0528.1998.tb10004.x. PubMed DOI
DeLancey JO. Structural anatomy of the posterior pelvic compartment as it relates to rectocele. Am J Obstet Gynecol. 1999;180(4):815–823. doi: 10.1016/S0002-9378(99)70652-6. PubMed DOI
Skinner EM, Dietz HP. Psychological and somatic sequelae of traumatic vaginal delivery: a literature review. Aust N Z J Obstet Gynaecol. 2014;55:309–314. doi: 10.1111/ajo.12286. PubMed DOI
Webb SS, Hemming K, Khalfaoui MY, Henriksen TB, Kindberg S, Stensgaard S, Kettle C, Ismail KM. An obstetric sphincter injury risk identification system (OSIRIS): is this a clinically useful tool? Int Urogynecol J. 2017;28(3):367–374. doi: 10.1007/s00192-016-3125-2. PubMed DOI PMC
Jelovsek JE, Chagin K, Gyhagen M, Hagen S, Wilson D, Kattan MW, Elders A, Barber MD, Areskoug B, MacArthur C. Predicting risk of pelvic floor disorders 12 and 20 years after delivery. Am J Obstet Gynecol. 2018;218(2):222.e221–222. e219. doi: 10.1016/j.ajog.2017.10.014. PubMed DOI
Wilson D, Dornan J, Milsom I, Freeman R. UR-CHOICE: can we provide mothers-to-be with information about the risk of future pelvic floor dysfunction? Int Urogynecol J. 2014;25(11):1449–1552. doi: 10.1007/s00192-014-2376-z. PubMed DOI
Mariappan YK, Glaser KJ, Ehman RL. Magnetic resonance elastography: a review. Clin Anat. 2010;23(5):497–511. doi: 10.1002/ca.21006. PubMed DOI PMC
Van Raalte H, Egorov V. Tactile imaging markers to characterize female pelvic floor conditions. Open J Obstet Gynecol. 2015;5(9):505. doi: 10.4236/ojog.2015.59073. PubMed DOI PMC
Egorov V, van Raalte H, Lucente V, Sarvazyan A. Biomechanics of the female pelvic floor. Amsterdam: Elsevier; 2016. Biomechanical characterization of the pelvic floor using tactile imaging; pp. 317–348.
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography—an emerging branch of medical imaging. Curr Med Imaging. 2011;7(4):255–282. doi: 10.2174/157340511798038684. PubMed DOI PMC
Buttin R, Zara F, Shariat B, Redarce T, Grangé G. Biomechanical simulation of the fetal descent without imposed theoretical trajectory. Comput Methods Prog Biomed. 2013;111(2):389–401. doi: 10.1016/j.cmpb.2013.04.005. PubMed DOI
Brandt JS, Rosen T, Van Raalte H, Kurtenos V, Egorov V. Characterization of perineum elasticity and pubic bone-perineal critical distance with a novel tactile probe: results of an intraobserver reproducibility study. Open J Obstet Gynecol. 2020;10(4):493–503. doi: 10.4236/ojog.2020.1040044. PubMed DOI PMC
Palmeri ML, Nightingale KR. Acoustic radiation force-based elasticity imaging methods. Interface Focus. 2011;1(4):553–564. doi: 10.1098/rsfs.2011.0023. PubMed DOI PMC
Bamber J, Cosgrove D, Dietrich C, Fromageau J, Bojunga J, Calliada F, Cantisani V, Correas J-M, D’onofrio M, Drakonaki E. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. I. Basic principles and technology. Ultraschall Med. 2013;34(02):169–184. doi: 10.1055/s-0033-1335205. PubMed DOI
Rostaminia G, Awad C, Chang C, Sikdar S, Wei Q, Shobeiri SA. Shear wave elastography to assess perineal body stiffness during labor. Female Pelvic Med Reconstr Surg. 2019;25(6):443–447. doi: 10.1097/SPV.0000000000000585. PubMed DOI
Van Raalte H, Egorov V. Characterizing female pelvic floor conditions by tactile imaging. Int Urogynecol J. 2015;26(4):607–609. doi: 10.1007/s00192-014-2549-9. PubMed DOI PMC
Gatellier M-A, dit Gautier EJ, Mayeur O, Brieu M, Cosson M, Rubod C. Complete 3 dimensional reconstruction of parturient pelvic floor. J Gynecol Obstet Human Reprod. 2020;49(1):101635. doi: 10.1016/j.jogoh.2019.101635. PubMed DOI
Havelková L, Krofta L, Kochová P, Liška V, Kališ V, Feyereisl J. Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model. Int Urogynecol J. 2019;31(7):1315–1324. doi: 10.1007/s00192-019-03997-8. PubMed DOI PMC
Jing D, Ashton-Miller JA, DeLancey JO. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45(3):455–460. doi: 10.1016/j.jbiomech.2011.12.002. PubMed DOI PMC
Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ, Trivedi A, Krysl P. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol. 2008;199(2):198.e1–198.e5. doi: 10.1016/j.ajog.2008.04.027. PubMed DOI
Jansova M, Kalis V, Lobovsky L, Hyncik L, Karbanova J, Rusavy Z. The role of thumb and index finger placement in manual perineal protection. Int Urogynecol J. 2014;25(11):1533–1540. doi: 10.1007/s00192-014-2425-7. PubMed DOI
Jansova M, Kalis V, Rusavy Z, Zemcik R, Lobovsky L, Laine K. Modeling manual perineal protection during vaginal delivery. Int Urogynecol J. 2014;25(1):65–71. doi: 10.1007/s00192-013-2164-1. PubMed DOI
Jansova M, Kalis V, Rusavy Z, Räisänen S, Lobovsky L, Laine K. Fetal head size and effect of manual perineal protection. PLoS One. 2017;12(12):e0189842. doi: 10.1371/journal.pone.0189842. PubMed DOI PMC
Kochová P, Cimrman R, Jansová M, Michalová K, Kalis V, Kubíková T, Tonar Z. The histological microstructure and in vitro mechanical properties of the human female postmenopausal perineal body. Menopause. 2019;26(1):66–77. doi: 10.1097/GME.0000000000001166. PubMed DOI
Kochová P, Hympánová L, Rynkevic R, Cimrman R, Tonar Z, Deprest J, Kalis V. The histological microstructure and in vitro mechanical properties of pregnant and postmenopausal ewe perineal body. Menopause. 2019;26(11):1289–1301. doi: 10.1097/GME.0000000000001395. PubMed DOI
Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M. Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J. 2008;19(6):811–816. doi: 10.1007/s00192-007-0533-3. PubMed DOI
Beckmann MM, Stock OM (2013) Antenatal perineal massage for reducing perineal trauma. Cochrane Database System Rev (4):CD005123. PubMed PMC
Dieb AS, Shoab AY, Nabil H, Gabr A, Abdallah AA, Shaban MM, et al. Perineal massage and training reduce perineal trauma in pregnant women older than 35 years: a randomized controlled trial. Int Urogynecol J. 2019;31(3):613–619. doi: 10.1007/s00192-019-03937-6. PubMed DOI