Finite element modeling of maximum stress in pelvic floor structures during the head expulsion (FINESSE) study

. 2021 Jul ; 32 (7) : 1997-2003. [epub] 20210402

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33797593
Odkazy

PubMed 33797593
DOI 10.1007/s00192-021-04769-z
PII: 10.1007/s00192-021-04769-z
Knihovny.cz E-zdroje

INTRODUCTION AND HYPOTHESIS: Several studies have assessed birth-related deformations of the levator ani muscle (LAM) and perineum on models that depicted these elements in isolation. The main aim of this study was to develop a complex female pelvic floor computational model using the finite element method to evaluate points and timing of maximum stress at the LAM and perineum in relation to the birth process. METHODS: A three-dimensional computational model of the female pelvic floor was created and used to simulate vaginal birth based on data from previously described real-life MRI scans. We developed three models: model A (LAM without perineum); model B (perineum without LAM); model C (a combined model with both structures). RESULTS: The maximum stress in the LAM was achieved when the vertex was 9 cm below the ischial spines and measured 37.3 MPa in model A and 88.7 MPa in model C. The maximum stress in the perineum occurred at the time of distension by the suboocipito-frontal diameter and reached 86.7 MPa and 119.6 MPa in models B and C, respectively, while the stress in the posterior fourchette caused by the suboccipito-bregmatic diameter measured 36.9 MPa for model B and 39.8 MPa for model C. CONCLUSIONS: Including perineal structures in a computational birth model simulation affects the level of stress at the LAM. The maximum stress at the LAM and perineum seems to occur when the head is lower than previously anticipated.

Zobrazit více v PubMed

Blomquist JL, Muñoz A, Carroll M, Handa VL. Association of delivery mode with pelvic floor disorders after childbirth. JAMA-J Am Med Assoc. 2018;320:2438–47. https://doi.org/10.1001/jama.2018.18315 . DOI

Necesalova P, Karbanova J, Rusavy Z, et al. Mediolateral versus lateral episiotomy and their effect on postpartum coital activity and dyspareunia rate 3 and 6 months postpartum. Sex Reprod Healthc. 2016;8:25–30. https://doi.org/10.1016/j.srhc.2016.01.004 . PubMed DOI

Larson KA, Yousuf A, Lewicky-Gaupp C, et al. Perineal body anatomy in living women: 3-dimensional analysis using thin-slice magnetic resonance imaging. Am J Obstet Gynecol. 2010;203:494.e15–21. https://doi.org/10.1016/j.ajog.2010.06.008 . DOI

Handa VL, Roem J, Blomquist JL, et al. Pelvic organ prolapse as a function of levator ani avulsion, hiatus size, and strength. Am J Obstet Gynecol. 2019;221:41.e1–7. https://doi.org/10.1016/j.ajog.2019.03.004 . DOI

Rizk DEE, Thomas L. Relationship between the length of the perineum and position of the anus and vaginal delivery in Primigravidae. Int Urogynecol J Pelvic Floor Dysfunct. 2000;11:79–83. https://doi.org/10.1007/s001920050074 . PubMed DOI

Kalis V, Karbanova J, Bukacova Z, et al. Anal dilation during labor. Int J Gynecol Obstet. 2010;109:136–9. https://doi.org/10.1016/j.ijgo.2009.11.024 . DOI

Zemčík R, Karbanova J, Kalis V, et al. Stereophotogrammetry of the perineum during vaginal delivery. Int J Gynecol Obstet. 2012;119:76–80. https://doi.org/10.1016/j.ijgo.2012.05.018 . DOI

Hoyte L, Damaser MS, Warfield SK, et al (2008) Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol 199:198.e1–198.e5. https://doi.org/10.1016/j.ajog.2008.04.027 .

Parente MPL, Jorge RMN, Mascarenhas T, et al. Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J. 2007;19:65–71. https://doi.org/10.1007/s00192-007-0388-7 . DOI

Jing D, Ashton-Miller JA, DeLancey JOL. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J Biomech. 2012;45:455–60. https://doi.org/10.1016/j.jbiomech.2011.12.002 . PubMed DOI

Jansova M, Kalis V, Rusavy Z, et al. Modeling manual perineal protection during vaginal delivery. Int Urogynecol J. 2014;25:65–71. https://doi.org/10.1007/s00192-013-2164-1 . PubMed DOI

Jansova M, Kalis V, Lobovsky L, et al. The role of thumb and index finger placement in manual perineal protection. Int Urogynecol J. 2014;25:1533–40. https://doi.org/10.1007/s00192-014-2425-7 . PubMed DOI

Jansova M, Kalis V, Rusavy Z, et al. Fetal head size and effect of manual perineal protection. PLoS One. 2017;12:e0189842. https://doi.org/10.1371/journal.pone.0189842 . PubMed DOI PMC

Oliveira DA, Parente MPL, Calvo B, et al. A biomechanical analysis on the impact of episiotomy during childbirth. Biomech Model Mechanobiol. 2016;15:1523–34. https://doi.org/10.1007/s10237-016-0781-6 . PubMed DOI

Krofta L, Havelkova L, Urbankova I, et al. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. Int Urogynecol J. 2017;28:275–84. DOI

Gatellier M-A, dit Gautier EJ, Mayeur O, et al. Complete 3 dimensional reconstruction of parturient pelvic floor. J Gynecol Obstet Hum Reprod. 2020;49:101635. https://doi.org/10.1016/j.jogoh.2019.101635 . PubMed DOI

Parente MP, Natal Jorge RM, Mascarenhas T, et al. Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol. 2010;203:217.e1–6. https://doi.org/10.1016/j.ajog.2010.03.038 . DOI

Havelková L, Krofta L, Kochová P, et al. Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model. Int Urogynecol J. 2020;31:1315–24. https://doi.org/10.1007/s00192-019-03997-8 . PubMed DOI

Bamberg C, Rademacher G, Güttler F, et al. Human birth observed in real-time open magnetic resonance imaging. Am J Obstet Gynecol. 2012;206:505.e1–6. https://doi.org/10.1016/j.ajog.2012.01.011 . DOI

Ogden RW, Saccomandi G, Sgura I. Fitting hyperelastic models to experimental data. Comput Mech. 2004;34:484–502. https://doi.org/10.1007/s00466-004-0593-y . DOI

Kochová P, Cimrman R, Jansová M, et al. The histological microstructure and in vitro mechanical properties of the human female postmenopausal perineal body. Menopause. 2019;26:66–77. https://doi.org/10.1097/GME.0000000000001166 . PubMed DOI

Hsu Y, Chen L, Huebner M, et al. Quantification of levator ani cross-sectional area differences between women with and those without prolapse. Obstet Gynecol. 2006. https://doi.org/10.1097/01.AOG.0000233153.75175.34 .

Spyrou LA, Aravas N. Muscle and tendon tissues: constitutive modeling and computational issues. J Appl Mech 78. 2011. https://doi.org/10.1115/1.4003741 .

Brandão S, Parente M, Mascarenhas T, et al. Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments. J Biomech. 2015;48:217–23. https://doi.org/10.1016/j.jbiomech.2014.11.045 . PubMed DOI

Cosson M, Rubod C, Vallet A, et al. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int Urogynecol J. 2013;24:105–12. https://doi.org/10.1007/s00192-012-1842-8 . PubMed DOI

Long J, Yang J, Lei Z, Liang D. Simulation-based assessment for construction helmets. Comput Methods Biomech Biomed Engin. 2015;18:24–37. https://doi.org/10.1080/10255842.2013.774382 . PubMed DOI

Meriwether KV, Lockhart ME, Meyer I, Richter HE. Anal sphincter anatomy Prepregnancy to Postdelivery among the same Primiparous women on dynamic magnetic resonance imaging. Female Pelvic Med Reconstr Surg. 2019;25:8–14. https://doi.org/10.1097/SPV.0000000000000504 . PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Birth and Regulation of head Extension to Guide Manual perineal Assistance (BREGMA) study: a prospective cohort study

. 2025 Mar 21 ; 25 (1) : 334. [epub] 20250321

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...