Hemodynamic changes in a middle cerebral artery aneurysm at follow-up times before and after its rupture: a case report and a review of the literature
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, přehledy
PubMed
27882440
DOI
10.1007/s10143-016-0795-7
PII: 10.1007/s10143-016-0795-7
Knihovny.cz E-zdroje
- Klíčová slova
- Computational fluid dynamics, Flow dynamic, Rupture location, Velocity, Wall shear stress,
- MeSH
- digitální subtrakční angiografie MeSH
- hemodynamika MeSH
- intrakraniální aneurysma komplikace diagnostické zobrazování patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- modely kardiovaskulární MeSH
- prasklé aneurysma komplikace diagnostické zobrazování patofyziologie MeSH
- subarachnoidální krvácení diagnostické zobrazování etiologie MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- přehledy MeSH
Hemodynamic parameters play a significant role in the development of cerebral aneurysms. Parameters such as wall shear stress (WSS) or velocity could change in time and may contribute to aneurysm growth and rupture. However, the hemodynamic changes at the rupture location remain unclear because it is difficult to obtain data prior to rupture. We analyzed a case of a ruptured middle cerebral artery (MCA) aneurysm for which we acquired imaging data at three time points, including at rupture. A patient with an observed MCA aneurysm was admitted to the emergency department with clinical symptoms of a subarachnoid hemorrhage. During three-dimensional (3D) digital subtraction angiography (DSA), the aneurysm ruptured again. Imaging data from two visits before rupture and this 3D DSA images at the moment of rupture were acquired, and computational fluid dynamic (CFD) simulations were performed. Results were used to describe the time-dependent changes of the hemodynamic variables associated with rupture. Time-dependent hemodynamic changes at the rupture location were characterized by decreased WSS and flow velocity magnitude. The impingement jet in the dome changed its position in time and the impingement area at follow-up moved near the rupture location. The results suggest that the increased WSS on the dome and increased low wall shear stress area (LSA) and decreased WSS on the daughter bleb with slower flow and slow vortex may be associated with rupture. CFD performed during the follow-up period may be part of diagnostic tools used to determine the risk of aneurysm rupture.
Department of Neurological Surgery Mayo Clinic Rochester MN USA
Department of Neurosurgery Masaryk Hospital J E Purkyně University Ústí nad Labem Czech Republic
Department of Neurosurgery Medical University Innsbruck Innsbruck Austria
Department of Physiology and Biomedical Engineering Mayo Clinic 200 1st St SW Rochester MN 55905 USA
Division of Engineering Mayo Clinic Rochester MN USA
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Mathematical Institute of Charles University 8 Praha Czech Republic
Zobrazit více v PubMed
AJNR Am J Neuroradiol. 2006 Sep;27(8):1703-9 PubMed
Neurosurgery. 2010 Nov;67(5):1268-74; discussion 1274-5 PubMed
J Biomech. 2005 Oct;38(10):1949-71 PubMed
Stroke. 2015 Jan;46(1):42-8 PubMed
N Engl J Med. 1998 Dec 10;339(24):1725-33 PubMed
AJNR Am J Neuroradiol. 2010 Feb;31(2):304-10 PubMed
AJNR Am J Neuroradiol. 2009 Sep;30(8):1507-12 PubMed
J Biomech. 2011 Nov 10;44(16):2826-32 PubMed
J Neurosurg. 2005 Feb;102(2):355-62 PubMed
AJNR Am J Neuroradiol. 2011 Mar;32(3):581-6 PubMed
AJNR Am J Neuroradiol. 2011 Jan;32(1):145-51 PubMed
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1916-22 PubMed
J Neurosurg. 2013 Jul;119(1):172-9 PubMed
Neuroradiology. 2008 May;50(5):411-21 PubMed
J Biomech Eng. 1996 Feb;118(1):74-82 PubMed
Stroke. 2004 Nov;35(11):2500-5 PubMed
AJNR Am J Neuroradiol. 2008 Oct;29(9):1761-7 PubMed
Stroke. 2008 Nov;39(11):2997-3002 PubMed
PLoS One. 2015 Jul 06;10(7):e0132494 PubMed
AJNR Am J Neuroradiol. 2015 Oct;36(10):1927-33 PubMed
J Neurointerv Surg. 2016 Jan;8(1):47-51 PubMed
AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1948-55 PubMed
Neurosurgery. 2008 Aug;63(2):185-96; discussion 196-7 PubMed
Stroke. 2011 Jan;42(1):144-52 PubMed
Cardiovasc Res. 2006 Sep 1;71(4):754-63 PubMed
AJNR Am J Neuroradiol. 2010 Feb;31(2):317-23 PubMed
Neurosurgery. 1999 Jul;45(1):119-29; discussion 129-30 PubMed
J Neurosurg. 2010 Jun;112(6):1240-53 PubMed
J Neurointerv Surg. 2016 Apr;8(4):367-72 PubMed
Stroke. 2012 May;43(5):1436-9 PubMed
Stroke. 1999 Feb;30(2):317-20 PubMed
J Neurosurg. 2005 Oct;103(4):662-80 PubMed
Med Phys. 2012 Feb;39(2):742-54 PubMed
AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10 ):2550-9 PubMed
Stroke. 2007 Jun;38(6):1924-31 PubMed
J Neurointerv Surg. 2014 Mar;6(2):e14 PubMed
J Biomech. 2012 Nov 15;45(16):2907-13 PubMed
J Biomech. 2013 Jan 18;46(2):402-7 PubMed
Int J Numer Method Biomed Eng. 2011 Jun 1;27(6):822-839 PubMed
Lancet. 2003 Jul 12;362(9378):103-10 PubMed
Neuroradiology. 1990;32(4):296-9 PubMed
Neurosurgery. 2013 Nov;73(5):767-76 PubMed
J R Soc Interface. 2012 Apr 7;9(69):677-88 PubMed
AJNR Am J Neuroradiol. 2014 Nov-Dec;35(11):2130-5 PubMed
Cerebrovasc Dis. 2012;34(2):121-9 PubMed
World Neurosurg. 2015 Jan;83(1):80-6 PubMed
Stroke. 2005 Sep;36(9):1933-8 PubMed
AJNR Am J Neuroradiol. 2014 Jul;35(7):1254-62 PubMed
Med Biol Eng Comput. 2014 Oct;52(10):827-39 PubMed
Interv Neuroradiol. 2006 Jan 20;12(Suppl 1):49-52 PubMed
IEEE Trans Med Imaging. 2005 Apr;24(4):457-67 PubMed
J Biomech. 2012 Sep 21;45(14 ):2355-61 PubMed
Stroke. 2013 Feb;44(2):519-21 PubMed