Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
27966037
PubMed Central
PMC5382179
DOI
10.1007/s00248-016-0904-8
PII: 10.1007/s00248-016-0904-8
Knihovny.cz E-zdroje
- Klíčová slova
- Archaeomicrobiology, Community level physiological profile (CLPP), Culturable and nonculturable bacteria, PLFA, Soil bacterial and fungal diversity,
- MeSH
- acetáty metabolismus MeSH
- archeologie * MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bakteriální nálož MeSH
- biodiverzita MeSH
- biomasa MeSH
- dějiny starověku MeSH
- DNA bakterií MeSH
- DNA fungální MeSH
- enzymatické testy MeSH
- fosfolipidy metabolismus MeSH
- heterotrofní procesy MeSH
- houby klasifikace genetika metabolismus MeSH
- kyseliny karboxylové metabolismus MeSH
- lidské činnosti dějiny MeSH
- mastné kyseliny metabolismus MeSH
- mikrobiální společenstva genetika fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- shluková analýza MeSH
- Check Tag
- dějiny starověku MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty MeSH
- DNA bakterií MeSH
- DNA fungální MeSH
- fosfolipidy MeSH
- kyseliny karboxylové MeSH
- mastné kyseliny MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
Institute of Archaeologies University of Innsbruck Langer Weg 11 6020 Innsbruck Austria
Institute of Microbiology University of Innsbruck Technikerstrasse 25 6020 Innsbruck Austria
Zobrazit více v PubMed
Demkin V, Borisov A, Alekseev A, Demkina T, Alekseeva T, Khomutova T. Integration of paleopedology and archaeology in studying the evolution of soils, environment, and human society. Eurasian Soil Sci. 2004;37:1–13.
Chernysheva EV, Korobov DS, Khomutova TE, Borisov AV. Urease activity in cultural layers at archaeological sites. J Archaeol Sci. 2015;57:24–31. doi: 10.1016/j.jas.2015.01.022. DOI
Peters S, Borisov AV, Reinhold S, Korobov DS, Thiemeyer H. Microbial characteristics of soils depending on the human impact on archaeological sites in the northern Caucasus. Quat Int. 2014;324:162–171. doi: 10.1016/j.quaint.2013.11.020. DOI
Grund BS, Williams SE, Surowell TA. Viable paleosol microorganisms, paleoclimatic reconstruction, and relative dating in archaeology: a test case from Hell Gap, Wyoming. J Archaeol Sci. 2014;46:217–228. doi: 10.1016/j.jas.2014.02.010. DOI
Mulec J, Krištůfek V, Chroňáková A, Oarga A, Scharfen J, Šestauberová M. Microbiology of healing mud (Fango) from Roman thermae Aquae Iasae archaeological site (Varaždinske Toplice, Croatia) Microb Ecol. 2015;69:293–306. doi: 10.1007/s00248-014-0491-5. PubMed DOI
Kistler E, Öhlinger B, Steger M. Zwischen Aphrodite-Tempel und spätarchaischem Haus. Die Innsbrucker Kampagne 2011 auf dem Monte Iato (Sizilien) Jahreshefte des Österreichischen Archäologischen Institutes. 2013;82:227–258.
Kistler E, Öhlinger B, Mölk N, et al. Zwischen Aphrodite-Tempel und spätarchaischem Haus. Die Innsbrucker Kampagnen 2012 und 2013 auf dem Monte Iato (Sizilien) Jahreshefte des Österreichischen Archäologischen Institutes. 2014;83:189–232.
Kistler E (2015) Zwischen Lokalität und Kolonialität - alternative Konzepte und Thesen zur Archäologie eines indigenen Kultplatzes auf dem Monte lato. In: Kienlin TL (ed) Fremdheit – Perspektiven auf das Andere. Kölner Beiträge zu Archäologie und Kulturwissenschaften 1. Habelt, Bonn, pp 195–218
Kistler E, Mohr M (2015) Monte Iato I: two late archaic feasting places between the local and global. In: Kistler E, Öhlinger B, Mohr M et al. (eds) Sanctuaries and the power of consumption. Networking and the formation of elites in the archaic western Mediterranean world. Proceedings of the International Conference in Innsbruck, 20th–23rd March 2012. Harrassowitz, Wiesbaden, pp 385–415
Kistler E, Mohr M (2016) The archaic Monte Iato: between coloniality and locality. In: Baitinger H (ed) Materielle Kultur und Identität im Spannungsfeld zwischen mediterraner Welt und Mitteleuropa. RGZM, Mainz, pp 81–98
Joyce R, Pollard J. Archaeological assemblage and practices of deposition. In: Beaudry MC, Hicks D, editors. The Oxford handbook of material culture studies. Oxford: Oxford University Press; 2010. pp. 291–312.
Binford L. A consideration of archaeological research design. Am Antiq. 1964;29:425–441. doi: 10.2307/277978. DOI
Neustupny E. Archaeological method. Cambridge: Cambridge University Press; 1993.
Reitz E, Shackley M. Environmental archaeology (manuals in archaeological methods, theory and technique) New York: Springer; 2012.
Weiner S. Microarchaeology: beyond the visible archaeological record. Cambridge: Cambridge University Press; 2010.
Weiner S. Archaeology, archaeological science, and integrative archaeology. Isr J Earth Sci. 2008;56:57–61. doi: 10.1560/IJES.56.2-4.57. DOI
Isler HP. Die Siedlung auf dem Monte Iato in archaischer Zeit. Jahrbuch des deutschen Archäologischen Instituts (Yearbook of the German Archaeological Institute) 2009;124:135–222.
Isler HP (2000) Monte Iato. Guida archeologica (Nuovo Museo 3). Sellerio, Palermo
Kistler E, Öhlinger B, Dauth Th et al (2016) Zwischen Aphrodite-Tempel und spätarchaischem Haus II. Die Innsbrucker Kampagne 2014 auf dem Monte Iato (Sizilien). Jahreshefte des Österreichischen Archäologischen Institutes 84
Öhlinger B (2015) Ritual und Religion im archaischen Sizilien. Formations- und Transformationsprozesse binnenländischer Kultorte im Kontext kultureller Kontakte. Italiká 4. Ludwig Reichert, Wiesbaden, pp 159–169
Schinner F, Öhlinger R, Kandeler E, Margesin R. Methods in soil biology (Springer lab manual) Berlin: Springer; 1996.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzym Microb Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI
Stella T, Covino S, Burianová E, Filipová A, Křesinová Z, Voříšková J, Větrovský T, Baldrian P, Cajthaml T. Chemical and microbiological characterization of an aged PCB-contaminated soil. Sci Total Environ. 2015;533:177–186. doi: 10.1016/j.scitotenv.2015.06.019. PubMed DOI
Tornberg K, Bååth E, Olsson S. Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biol Fertil Soils. 2003;37:190–197.
Moore-Kucera J, Dick RP. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microb Ecol. 2008;55:500–511. doi: 10.1007/s00248-007-9295-1. PubMed DOI
Fra̧c M, Oszust K, Lipiec J. Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors. 2012;12:3253–3268. doi: 10.3390/s120303253. PubMed DOI PMC
Siles JA, Rachid CTCC, Sampedro I, García-Romera I, Tiedje JM. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One. 2014;9:e103035. doi: 10.1371/journal.pone.0103035. PubMed DOI PMC
Siles JA, Cajthaml T, Minerbi S, Margesin R. Effect of altitude and season on microbial activity, abundance and community structure in alpine forest soils. FEMS Microbiol Ecol. 2016;92:fiw008. doi: 10.1093/femsec/fiw008. PubMed DOI
Lane D. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester: Wiley; 1991. pp. 115–175.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic; 1990. pp. 315–322.
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Bengtsson-Palme J, Ryberg M, Hartmann M, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–919.
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC
Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One. 2009;4:e6669. doi: 10.1371/journal.pone.0006669. PubMed DOI PMC
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Margesin R, Plaza GA, Kasenbacher S. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 2011;82:1583–1588. doi: 10.1016/j.chemosphere.2010.11.056. PubMed DOI
Marmur JA. Procedure for the isolation of deoxyribonucleic acid from microorganisms. Methods Enzymol. 1963;6:726–738. doi: 10.1016/0076-6879(63)06240-6. DOI
Artursson V, Jansson JK. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol. 2003;69:6208–6215. doi: 10.1128/AEM.69.10.6208-6215.2003. PubMed DOI PMC
Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, Park S-C, Jeon YS, Lee J-H, Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–721. doi: 10.1099/ijs.0.038075-0. PubMed DOI
Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles. 2003;7:451–458. doi: 10.1007/s00792-003-0347-2. PubMed DOI
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:XIX–XX.
Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI
Tang H, Shi X, Wang X, Hao H, Zhang MX, Zhang PL. Environmental controls over actinobacteria communities in ecological sensitive Yanshan mountains zone. Front Microbiol. 2016;7:343. PubMed PMC
Goodfellow M, Williams ST. Ecology of actinomycetes. Annu Rev Microbiol. 1983;37:189–216. doi: 10.1146/annurev.mi.37.100183.001201. PubMed DOI
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548. doi: 10.1128/MMBR.00005-07. PubMed DOI PMC
Atlas M, Bartha R. Microbial evolution and biodiversity. Menlo Park: Benjamim/Cummings Science; 1998.
Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL. Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia. 2011;103:10–21. doi: 10.3852/09-297. PubMed DOI
Abed RMM, Al-Sadi AM, Al-Shehi M, Al-Hinai S, Robinson MD. Diversity of free-living and lichenized fungal communities in biological soil crusts of the sultanate of Oman and their role in improving soil properties. Soil Biol Biochem. 2013;57:695–705. doi: 10.1016/j.soilbio.2012.07.023. DOI
Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Wu F, An L, Wang W, Gu J-D, Feng H. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep. 2015;5:7752. doi: 10.1038/srep07752. PubMed DOI PMC
Rachid CT, Santos AL, Piccolo MC, Balieiro FC, Coutinho HL, Peixoto RS, Tiedje JM, Rosado AS. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. PLoS One. 2013;8:e59342. doi: 10.1371/journal.pone.0059342. PubMed DOI PMC
Mataix-Solera J, Guerrero C, García-Orenes F, Bárcenas GM, Torres MP (2009) Forest fire effects on soil microbiology. In: Cerdà A, Robichaud PR (eds) Fire effects on soils and restoration strategies: land reconstruction and management. Series Science Publ vol 5, Enfield, Jersey, Plymouth, pp 133–175
Southern PM. Archeology meets clinical microbiology: analysis of the microbial content of soil from archeological sites in Italy and Belize. Lab Med. 2008;39:601–602. doi: 10.1309/LMHJGYSGYAPHCNV9. DOI
Zanardini E, May E, Inkpen R, Cappitelli F, Murrell JC, Purdy KJ. Diversity of archaeal and bacterial communities on exfoliated sandstone from Portchester Castle (UK) Int Biodeterior Biodegrad. 2016;109:78–87. doi: 10.1016/j.ibiod.2015.12.021. DOI
Abdulla H, May E, Bahgat M, Dewedar A. Characterisation of actinomycetes isolated from ancient stone and their potential for deterioration. Pol J Microbiol. 2008;57:213–220. PubMed
Burgmann H, Pesaro M, Widmer F, Zeyer J. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods. 2001;45:7–20. doi: 10.1016/S0167-7012(01)00213-5. PubMed DOI
Oliver JD. The viable but nonculturable state in bacteria. J Microbiol. 2005;43:93–100. PubMed
Milanesi C, Cresti M, Costantini L, Gallo M, Gallo G, Crognale S, Faleri S, Gradi A, Franco B. Spoilage of oat bran by sporogenic microorganisms revived from soil buried 4000 years ago in Iranian archaeological site. Int Biodeterior Biodegrad. 2015;104:83–91. doi: 10.1016/j.ibiod.2015.05.016. DOI
Kawa NC, Painter B, Murray CE. Trail trees: living artifacts (Vivifacts) of Eastern North America. Ethnobiol Lett. 2015;6:183–188. doi: 10.14237/ebl.6.1.2015.410. DOI