Half-Sandwich Ru(II) Halogenido, Valproato and 4-Phenylbutyrato Complexes Containing 2,2'-Dipyridylamine: Synthesis, Characterization, Solution Chemistry and In Vitro Cytotoxicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27983703
PubMed Central
PMC6274116
DOI
10.3390/molecules21121725
PII: molecules21121725
Knihovny.cz E-zdroje
- Klíčová slova
- 2,2′-dipyridylamine, X-ray structure, half-sandwich, in vitro cytotoxicity, ruthenium, solution behaviour,
- MeSH
- glutathion chemie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- protinádorové látky chemická syntéza chemie MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- racionální návrh léčiv * MeSH
- rozpouštědla chemická syntéza chemie MeSH
- ruthenium chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutathion MeSH
- protinádorové látky MeSH
- rozpouštědla MeSH
- ruthenium MeSH
Halogenido and carboxylato Ru(II) half-sandwich complexes of the general composition [Ru(η⁶-p-cym)(dpa)X]PF₆ (1-5) were prepared and thoroughly characterized with various techniques (e.g., mass spectrometry, NMR spectroscopy and X-ray analysis); dpa = 2,2'-dipyridylamine; p-cym = p-cymene; X = Cl- (for 1), Br- (for 2), I- (for 3), valproate(1-) (for 4) or 4-phenylbutyrate(1-) (for 5). A single-crystal X-ray analysis showed a pseudo-octahedral piano-stool geometry of [Ru(η⁶-p-cym)(dpa)I]PF₆ (3), with a η⁶-coordinated p-cymene, bidentate N-donor dpa ligand and iodido ligand coordinated to the Ru(II) atom. The results of the ¹H-NMR solution behaviour studies proved that the complexes 1-5 hydrolyse were in the mixture of solvents used (10% MeOD-d₄/90% D₂O). Complexes 1-5 were in vitro inactive against the A2780 human ovarian carcinoma cell line, up to the highest tested concentration (IC50 > 100 μM).
Zobrazit více v PubMed
Murray B.S., Babak M.V., Hartinger C.G., Dyson P.J. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016;306:86–114. doi: 10.1016/j.ccr.2015.06.014. DOI
Süss-Fink G. Arene ruthenium complexes as anticancer agents. Dalton Trans. 2010;39:1673–1688. doi: 10.1039/B916860P. PubMed DOI
Romero-Canelón I., Salassa L., Sadler P.J. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: Control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J. Med. Chem. 2013;56:1291–1300. doi: 10.1021/jm3017442. PubMed DOI
Chiu C.T., Wang Z., Hunsberger J.G., Chuang D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder. Pharmacol. Rev. 2013;65:105–142. doi: 10.1124/pr.111.005512. PubMed DOI PMC
Iannitti T., Palmieri B. Clinical and experimental applications of sodium phenylbutyrate. Drugs R&D. 2011;11:227–249. PubMed PMC
Alessio M., Zanellato I., Bonarrigo I., Gabano E., Ravera M., Osella D. Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. J. Inorg. Biochem. 2013;129:52–57. doi: 10.1016/j.jinorgbio.2013.09.003. PubMed DOI
Kašpárková J., Kostrhunová H., Nováková O., Křikavová R., Vančo J., Trávníček Z., Brabec V. A photoactivatable platinum(IV) complex targeting genomic DNA and histone deacetylases. Angew. Chem. Int. Ed. 2015;54:14478–14482. doi: 10.1002/anie.201506533. PubMed DOI
Novohradsky V., Zerzankova L., Stepankova J., Vrana O., Raveendran R., Gibson D., Kasparkova J., Brabec V. Antitumor platinum(IV) derivatives of oxaliplatin with axial valproato ligands. J. Inorg. Biochem. 2014;140:72–79. doi: 10.1016/j.jinorgbio.2014.07.004. PubMed DOI
Raveendran R., Braude J.P., Wexselblatt E., Novohradsky V., Stuchlikova O., Brabec V., Gandin V., Gibson D. Pt(IV) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chem. Sci. 2016;7:2381–2391. doi: 10.1039/C5SC04205D. PubMed DOI PMC
Romain C., Gaillard S., Elmkaddem M.K., Toupet L., Fischmeister C., Thomas C.M., Renaud J.L. New dipyridylamine ruthenium complexes for transfer hydrogenation of aryl ketones in water. Organometallics. 2010;29:1992–1995. doi: 10.1021/om100127f. DOI
Kaluderović G.N., Krajnović T., Momcilovic M., Stosic-Grujicic S., Mijatović S., Maksimović-Ivanić D., Hey-Hawkins E. Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response. J. Inorg. Biochem. 2015;153:315–321. doi: 10.1016/j.jinorgbio.2015.09.006. PubMed DOI
Auzias M., Mattsson J., Therrien B., Süss-Fink G. New dinuclear Ru2(CO)4 sawhorse-type complexes containing bridging carboxylato ligands. Z. Anorg. Allg. Chem. 2009;635:115–119. doi: 10.1002/zaac.200800385. DOI
Stodt R., Gencaslan S., Müller I.M., Sheldrick W.S. Preparation, reactivity and peptide labelling Properties of (η6-arene)ruthenium(II) complexes with pendant carboxylate groups. Eur. J. Inorg. Chem. 2003:1873–1882. doi: 10.1002/ejic.200200599. DOI
Stringer T., Therrien B., Hendricks D.T., Guzgay H., Smith G.S. Mono- and dinuclear (η6-arene) ruthenium(II) benzaldehyde thiosemicarbazone complexes: Synthesis, characterization and cytotoxicity. Inorg. Chem. Commun. 2011;14:956–960. doi: 10.1016/j.inoche.2011.03.041. DOI
Gupta G., Gloria S., Das B., Rao K.M. Study of new mononuclear platinum group metal complexes containing η5 and η6-carbocyclic ligands and nitrogen based derivatives and formation of helices due to N–H···Cl interactions. J. Mol. Struct. 2010;979:205–213. doi: 10.1016/j.molstruc.2010.06.028. DOI
Kumar P., Singh A.K., Pandey R., Li P.Z., Singh S.K., Xu Q., Pandey D.S. Synthesis, characterization and reactivity of arene ruthenium compounds based on 2,2′-dipyridylamine and di-2-pyridylbenzylamine and their applications in catalytic hydrogen transfer of ketones. J. Organomet. Chem. 2010;695:2205–2212. doi: 10.1016/j.jorganchem.2010.06.003. DOI
Kubanik M., Holtkamp H., Sohnel T., Jamieson S.M.F., Hartinger C.G. Impact of the halogen substitution pattern on the biological activity of organoruthenium 8-hydroxyquinoline anticancer agents. Organometallics. 2015;34:5658–5668. doi: 10.1021/acs.organomet.5b00868. DOI
Pouchert C.J. The Aldrich Library of Infrared Spectra (Ed. III) Aldrich Chemical Co.; Milwaukee, WI, USA: 1981.
Govindaswamy P., Mozharivskyj Y.A., Kollipara M.R. Syntheses, spectral and structural studies of Schiff base complexes of η5-pentamethylcyclopentadienyl rhodium and iridium. Polyhedron. 2005;24:1710–1716. doi: 10.1016/j.poly.2005.04.034. DOI
Petruševski G., Naumov P., Jovanovski G., Bogoeva-Gaceva G., Ng S.W. Solid-state forms of sodium valproate, active component of the anticonvulsant drug epilim. ChemMedChem. 2008;3:1377–1386. doi: 10.1002/cmdc.200800112. PubMed DOI
Brittain H.G. Vibrational spectroscopic studies of cocrystals and salts. 3. Cocrystal products formed by benzenecarboxylic acids and their sodium salts. Cryst. Growth Des. 2010;10:1990–2003. doi: 10.1021/cg100099w. DOI
Griffith D.M., Duff B., Suponitsky K.Y., Kavanagh K., Morgan M.P., Egan D., Marmion C.J. Novel trans-platinum complexes of the histone deacetylase inhibitor valproic acid; synthesis, in vitro cytotoxicity and mutagenicity. J. Inorg. Biochem. 2011;105:793–799. doi: 10.1016/j.jinorgbio.2011.03.001. PubMed DOI
Gupta G., Therrien B., Kim J. [Bis-(2-pyrid-yl-κN)amine]chlorido(η6-hexa-methyl-benzene)-ruthenium(II) hexa-fluorido-phosphate dichloro-methane solvate. Acta Cryst. 2011;E67:m548. PubMed PMC
Allen F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Cryst. 2002;B58:380–388. doi: 10.1107/S0108768102003890. PubMed DOI
Betanzos-Lara S., Novakova O., Deeth R.J., Pizarro A.M., Clarkson G.J., Liskova B., Brabec V., Sadler P.J., Habtemariam A. Bipyrimidine ruthenium(II) arene complexes: Structure, reactivity and cytotoxicity. J. Biol. Inorg. Chem. 2012;17:1033–1051. doi: 10.1007/s00775-012-0917-9. PubMed DOI
Sadler P., Morris R., Parsons S., Messenger D. CCDC 276854: Experimental Crystal Structure Determination. CSD Commun. 2005 doi: 10.5517/cc992sf. DOI
Jolley K.E., Clarkson G.J., Wills M. Tethered Ru(II) catalysts containing a Ru–I bond. J. Organomet. Chem. 2015;776:157–162. doi: 10.1016/j.jorganchem.2014.10.033. DOI
Jamieson E.R., Lippard S.J. Structure, recognition, and processing of Cisplatin−DNA adducts. Chem. Rev. 1999;99:2467–2498. doi: 10.1021/cr980421n. PubMed DOI
Morris R.E., Aird R.E., del Socorro Murdoch P., Chen H., Cummings J., Hughes N.D., Parsons S., Parkin A., Boyd G., Jodrell D.I., et al. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J. Med. Chem. 2001;44:3616–3621. doi: 10.1021/jm010051m. PubMed DOI
Štarha P., Hanousková L., Trávníček Z. Organometallic half-sandwich dichloridoruthenium(II) complexes with 7-azaindoles: Synthesis, characterization and elucidation of their anticancer inactivity against A2780 cell line. PLoS ONE. 2015;10:e0143871. PubMed PMC
Reedijk J. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem. Rev. 1999;99:2499–2510. doi: 10.1021/cr980422f. PubMed DOI
Wang F., Xu J., Habtemariam A., Bella J., Sadler P.J. Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: Detection of a sulfenato intermediate. J. Am. Chem. Soc. 2005;127:17734–17743. doi: 10.1021/ja053387k. PubMed DOI
Govender P., Renfrew A.K., Clavel C.M., Dyson P.J., Therrien B., Smith G.S. Antiproliferative activity of chelating N,O- and N,N-ruthenium(II) arene functionalised poly(propyleneimine) dendrimer scaffolds. Dalton Trans. 2011;40:1158–1167. doi: 10.1039/C0DT00761G. PubMed DOI
Makhubela B.C.E., Meyer M., Smith G.S. Evaluation of trimetallic Ru(II)- and Os(II)-arene complexes as potential anticancer agents. J. Organomet. Chem. 2014;772–773:229–241. doi: 10.1016/j.jorganchem.2014.08.034. DOI
Tönnemann J., Risse J., Grote Z., Scopelliti R., Severin K. Efficient and rapid synthesis of chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating. Eur. J. Inorg. Chem. 2013:4558–4562. doi: 10.1002/ejic.201300600. DOI
Gottlieb H.E., Kotlyar V., Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997;62:7512–7515. doi: 10.1021/jo971176v. PubMed DOI
Bruker . Apex3. Bruker AXS Inc.; Madison, WI, USA: 2015.
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8. PubMed PMC
Brandenburg K. Diamond Version 4.0.3. Crystal Impact GbR; Bonn, Germany: 2015.
Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI