Organometallic Half-Sandwich Dichloridoruthenium(II) Complexes with 7-Azaindoles: Synthesis, Characterization and Elucidation of Their Anticancer Inactivity against A2780 Cell Line

. 2015 ; 10 (11) : e0143871. [epub] 20151125

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26606245

A series of organometallic half-sandwich dichloridoruthenium(II) complexes of the general formula [Ru(η6-p-cym)(naza)Cl2] (1-8; p-cym = p-cymene; naza = 7-azaindole or its derivatives) was synthesised and fully characterized by elemental analysis, mass spectrometry, and infrared and multinuclear NMR spectroscopy. A single-crystal X-ray structural analysis of [Ru(η6-p-cym)(2Me4Claza)Cl2] (6) revealed a typical piano-stool geometry with an N7-coordination mode of 2-methyl-4-chloro-7-azaindole (2Me4Claza). The complexes have been found to be inactive against human ovarian cancer cell line A2780 up to the highest applied concentration (IC50 > 50.0 μM). An inactivity of the complexes is caused by their instability in water-containing solvents connected with a release of the naza N-donor ligand, as proved by the detailed 1H NMR, mass spectrometry and fluorescence experiments.

Zobrazit více v PubMed

Desoize B, Madoulet C. Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol. 2002; 42: 317–325. PubMed

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nature Rev Cancer. 2007; 7: 573–584. PubMed

Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun. 2013; 49: 5106–5131. PubMed

Clarke MJ. Ruthenium metallopharmaceuticals. Coord Chem Rev. 2003; 236: 209–233.

Cutillas N, Yellol GS, de Haro C, Vicente C, Rodríguez V, Ruiz J. Anticancer cyclometalated complexes of platinum group metals and gold. Coord Chem Rev. 2013; 257: 2784–2797.

Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: latest advances. Coord Chem Rev. 2015; 284: 329–350.

Levina A, Mitra A, Lay PA. Recent developments in ruthenium anticancer drugs. Metallomics. 2009; 1: 458–470. 10.1039/b904071d PubMed DOI

Trondol R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci. 2014; 5: 2925–2932.

Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A, et al. Inhibition of endothelial cell functions and of angiogenesis by the metastasis inhibitor NAMI-A. Br J Cancer. 2002; 86: 993–998. PubMed PMC

Romero-Canelón I, Salassa L, Sadler PJ. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway. J Med Chem. 2013; 56: 1291–1300. 10.1021/jm3017442 PubMed DOI

Trávníček Z, Matiková-Maľarová M, Novotná R, Vančo J, Štěpánková K, Suchý P. In vitro and in vivo biological activity screening of Ru(III) complexes involving 6-benzylaminopurine derivatives with higher pro-apoptotic activity than NAMI-A. J Inorg Biochem. 2011; 105: 937–948. 10.1016/j.jinorgbio.2011.04.002 PubMed DOI

Soldevila-Barreda JJ, Romero-Canelón I, Habtemariam A, Sadler PJ. A new approach to anticancer drug design: transfer hydrogenation catalysis in cells. Nature Commun. 2015; 6: 6582. PubMed PMC

Weiss A, Berndsen RH, Dubois M, Muller C, Schibli R, Griffioen AW, et al. In vivo anti-tumor activity of the organometallic ruthenium(II)-arene complex [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem Sci. 2014; 5: 4742–4748.

Nazarov AA, Gardini D, Baquié M, Juillerat-Jeanneret L, Serkova TP, Shevtsova EP, et al. Organometallic anticancer agents that interfere with cellular energy processes: a subtle approach to inducing cancer cell death. Dalton Trans. 2013; 42: 2347–2350. 10.1039/c2dt31936e PubMed DOI

Khan FA, Therrien B, Süss-Fink G, Zava O, Dyson PJ. Arene ruthenium dichlorido complexes containing isonicotinic ester ligands: synthesis, molecular structure and cytotoxicity. J Organomet Chem. 2013; 730: 49–56.

Wang Z, Qian H, Yiu J, Sun SM, Zhu G. Multi-targeted organometallic ruthenium(II)–arene anticancer complexes bearing inhibitors of poly(ADP-ribose) polymerase-1: a strategy to improve cytotoxicity. J Inorg Biochem. 2014; 131: 47–55. 10.1016/j.jinorgbio.2013.10.017 PubMed DOI

Kilpin KJ, Clavel CM, Edafe F, Dyson PJ. Naphthalimide-tagged ruthenium−arene anticancer complexes: combining coordination with intercalation. Organometallics. 2012; 31: 7031–7039.

Betanzos-Lara S, Habtemariam A, Clarkson GJ, Sadler PJ. Organometallic cis-dichlorido ruthenium(II) ammine complexes. Eur J Inorg Chem. 2011; 21: 3257–3264. PubMed PMC

Liu KG, Cai XQ, Li XC, Qin DA, Hu ML. Arene-ruthenium(II) complexes containing 5-fluorouracil-1-methyl isonicotinate: Synthesis and characterization of their anticancer activity. Inorg Chim Acta. 2012; 388: 78–83.

Grau J, Noe V, Ciudad C, Prieto MJ, Font-Bardia M, Calvet T, et al. New π-arene ruthenium(II) piano-stool complexes with nitrogen ligands. J Inorg Biochem. 2012; 109: 72–81. 10.1016/j.jinorgbio.2012.01.003 PubMed DOI

Sáez R, Lorenzo J, Prieto MJ, Font-Bardia M, Calvet T, Omeñaca N, et al. Influence of PPh3 moiety in the anticancer activity of neworganometallic ruthenium complexes. J Inorg Biochem. 2014; 136: 1–12. 10.1016/j.jinorgbio.2014.03.002 PubMed DOI

Patra M, Joshi T, Pierroz V, Ingram K, Kaiser M, Ferrari S, et al. DMSO-mediated ligand dissociation: renaissance for biological activity of N-heterocyclic-[Ru(η6-arene)Cl2] drug candidates. Chem Eur J. 2013; 19: 14768–14772. 10.1002/chem.201303341 PubMed DOI

Tönnemann J, Risse J, Grote Z, Scopelliti R, Severin K. Efficient and rapid synthesis of chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating. Eur J Inorg Chem. 2013; 26: 4558–4562.

Kabsch W. XDS. Acta Cryst. 2010; D66: 125–132. PubMed PMC

Sheldrick GM. A short history of SHELX. Acta Cryst. 2008; A64: 112–122. PubMed

Brandenburg K, Diamond Version 4.0.3., Crystal Impact GbR, Bonn, Germany, 2015.

Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008; 41: 466–470.

Štarha P, Trávníček Z, Popa A, Popa I, Muchová T, Brabec V. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J Inorg Biochem. 2012; 115: 57–63. 10.1016/j.jinorgbio.2012.05.006 PubMed DOI

Štarha P, Hošek J, Vančo J, Dvořák Z, Suchý P, Popa I, et al. Pharmacological and Molecular Effects of Platinum(II) Complexes Involving 7-Azaindole Derivatives. PLoS ONE. 2014; 9: e90341 10.1371/journal.pone.0090341 PubMed DOI PMC

Štarha P, Dvořák Z, Trávníček Z. Highly and broad-spectrum in vitro antitumor active cis-dichloridoplatinum(II) complexes with 7-azaindoles. PLoS ONE. 2015; 10: e0136338 10.1371/journal.pone.0136338 PubMed DOI PMC

Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr Sect B Struct Sci. 2002; 58: 380–388. PubMed

Kosaka W, Yamamoto N, Miyasaka H. Axial-site modifications of paddlewheel diruthenium(II, II) complexes supported by hydrogen bonding. Inorg Chem. 2013; 52: 9908–9914. 10.1021/ic401030r PubMed DOI

Bland BRA, Gilfoy HJ, Vamvounis G, Robertson KN, Cameron TS, Aquino MAS. Hydrogen bonding in diruthenium(II,III) tetraacetate complexes with biologically relevant axial ligands. Inorg Chim Acta. 2005; 358: 3927–3936.

Díaz-Torres R, Alvarez S. Coordinating ability of anions and solvents towards transition metals and lanthanides. Dalton Trans. 2011; 40: 10742–10750. 10.1039/c1dt11000d PubMed DOI

Corazza A, Harvey I, Sadler PJ, 1H, 13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. Eur J Biochem. 1996; 236: 697–705. PubMed

Štarha P, Trávníček Z, Dvořák Z, Radošová-Muchová T, Prachařová J, Vančo J, et al. Potentiating effect of UVA irradiation on anticancer activity of carboplatin derivatives involving 7-azaindoles. PLoS ONE. 2015; 10: e0123595 10.1371/journal.pone.0123595 PubMed DOI PMC

Ganeshpandian M, Loganathan R, Suresh E, Riyasdeen A, Akbarshad MA, Palaniandavar M. New ruthenium(II) arene complexes of anthracenyl-appended diazacycloalkanes: effect of ligand intercalation and hydrophobicity on DNA and protein binding and cleavage and cytotoxicity. Dalton Trans. 2014; 43: 1203–1219. 10.1039/c3dt51641e PubMed DOI

New EJ, Roche C, Madawala R, Zhang JZ, Hambley TW. Fluorescent analogues of quinoline reveal amine ligand loss from cis and trans platinum (II) complexes in cancer cells. J Inorg Biochem. 2009; 103: 1120–1125. 10.1016/j.jinorgbio.2009.05.005 PubMed DOI

Chen Y, Rich RL, Gai F, Petrich JW. Fluorescent species of 7-azaindole and 7-azatryptophan in water. J Phys Chem. 1993; 97: 1770–1780.

Tokumura K, Watanabe Y, Udagawa M, Itoh M. Photochemistry of transient tautomer of 7-azaindole hydrogen-bonded dimer studied by two-step laser excitation fluorescence measurements. J Am Chem Soc. 1987; 109: 1346–1350.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...