Highly and Broad-Spectrum In Vitro Antitumor Active cis-Dichloridoplatinum(II) Complexes with 7-Azaindoles
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26309251
PubMed Central
PMC4550364
DOI
10.1371/journal.pone.0136338
PII: PONE-D-15-24141
Knihovny.cz E-zdroje
- MeSH
- chemorezistence MeSH
- cisplatina chemie farmakologie MeSH
- glutathion chemie MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie MeSH
- indoly chemie farmakologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 7-azaindole dimer MeSH Prohlížeč
- cisplatina MeSH
- glutathion MeSH
- indoly MeSH
- organoplatinové sloučeniny MeSH
- protinádorové látky MeSH
The cis-[PtCl2(naza)2] complexes (1-3) containing monosubstituted 7-azaindole halogeno-derivatives (naza), showed significantly higher activity than cisplatin towards ovarian carcinoma A2780, its cisplatin-resistant variant A2780R, osteosarcoma HOS, breast carcinoma MCF7 and cervix carcinoma HeLa cell lines, with the IC50 values of 3.8, 3.5, 4.5, 2.7, and 9.2 μM, respectively, obtained for the most active complex 3. As for 4 and 5 having disubstituted 7-azaindoles in their molecule, the significant cytotoxicity was detected only for 4 against A2780 (IC50 = 4.8 μM), A2780R (IC50 = 3.8 μM) and HOS (IC50 = 4.3 μM), while 5 was evaluated as having only moderate antiproliferative effect against the mentioned cancer cell lines with IC50 = 33.4, 24.7 and 46.7 μM, respectively. All the studied complexes 1-5 effectively avoided the acquired resistance of ovarian carcinoma cell line. On the other hand, the complexes did not reveal any inhibition activity on the purified 20S proteasome from the A2780 cells. The representative complexes 3 and 5 showed low ability to be hydrolysed, but their stability was markedly lowered in the presence of physiological sulphur-containing biomolecule glutathione (GSH), as proved by the 1H NMR spectroscopy and mass spectrometry studies. A rate of interaction of the studied complexes with GSH was affected by an addition of another mechanistically relevant biomolecule guanosine monophosphate. The differences in interactions of 3 and 5 with GSH correlate well with their different cytotoxicity profiles.
Zobrazit více v PubMed
Rosenberg B, VanCamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965; 205: 698–699. PubMed
Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969; 222: 385–386. PubMed
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nature Rev Cancer. 2007; 7: 573–584. PubMed
Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010; 39: 8113–8127. 10.1039/c0dt00292e PubMed DOI
Akamatsu K, Endo K, Matsumoto T, Kamisango K, Morikawa K, Koizumi M, et al. Potent antitumour activity of (-)-(R)-2-aminomethylpyrrolidine (1,1-cyclobutanedicarboxylato)platinum(II) monohydrate (DWA2114R) against advanced L1210 leukaemia in mice. Br J Cancer. 1992; 66: 827–832. PubMed PMC
Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR. In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer. 1998; 77: 366–373. PubMed PMC
Harrap KR. Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat Rev. 1985; 12: 21–33. PubMed
Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K. Antitumor activity of 1,2-diaminocyclohexaneplatinum complexes against Sarcoma-180 ascites form. J Med Chem. 1978; 21: 1315–1318. PubMed
Perez-Soler R, Yang LY, Drewinko B, Lauterzstain J, Khokhar AR. Increased cytotoxicity and reversal of resistance to PubMed
de Jong WH, Steerenberg PA, Vos JG, Butten EJ, Verbeek F, Kruizinga W, et al. Antitumor activity, induction of cross-resistance, and nephrotoxicity of a new platinum analogue, PubMed
Rice JR, Gerberich JL, Nowotnik D, Howell SB. Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin Cancer Res. 2006; 12: 2248–2254. PubMed
Kobayashi H, Takemura Y, Miyachi H, Ogawa T. Antitumor activities of new platinum compounds, DWA2114R, NK121 and 254-S, against human leukemia cells sensitive or resistant to cisplatin. Invest New Drugs. 1991; 9: 313–319. PubMed
Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, Abrams M, et al. Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anticancer Drug Des. 1998; 13: 1–18. PubMed
Sharp SY, O’Neill CF, Rogers PM, Boxall FE, Kelland LR. Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin. Eur J Cancer. 2002; 38: 2309–2315. PubMed
Chen Y, Guo Z, Parsons S, Sadler PJ. Stereospecific and kinetic control over the hydrolysis of a sterically hindered platinum picoline anticancer complex. Chem Eur J. 1998; 4: 672–676.
Park GY, Wilson JJ, Song Y, Lippard SJ. Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci USA. 2012; 109: 11987–11992. 10.1073/pnas.1207670109 PubMed DOI PMC
Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs–phenanthriplatin. Anticancer Res. 2014; 34: 471–476. PubMed PMC
Trávníček Z, Štarha P, Popa I, Vrzal R, Dvořák Z. Roscovitine-based CDK inhibitors acting as N-donor ligands in the platinum(II) oxalato complexes: Preparation, characterization and in vitro cytotoxicity. Eur J Med Chem. 2010; 45: 4609–4614. 10.1016/j.ejmech.2010.07.025 PubMed DOI
Štarha P, Trávníček Z, Popa A, Popa I, Muchová T, Brabec V. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J Inorg Biochem. 2012; 115: 57–63. 10.1016/j.jinorgbio.2012.05.006 PubMed DOI
Muchová T, Prachařová J, Štarha P, Olivová R, Vrána O, Benešová B, et al. Insight into the toxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J Biol Inorg Chem. 2013; 18: 579–589. 10.1007/s00775-013-1003-7 PubMed DOI
Štarha P, Hošek J, Vančo J, Dvořák Z, Suchý P, Popa I, et al. Pharmacological and molecular effects of platinum(II) complexes involving 7-azaindole derivatives. PLoS ONE. 2014; 9: e90341 10.1371/journal.pone.0090341 PubMed DOI PMC
Salemi G, Gueli MC, D’Amelio M, Saia V, Mangiapane P, Aridon P, et al. Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol Sci. 2009; 30: 361–364. 10.1007/s10072-009-0090-2 PubMed DOI
Hoffman L, Pratt G, Rechsteiner M. Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate. J Biol Chem. 1992; 267: 22362–22368. PubMed
Hirano Y, Murata S, Tanaka K. Large‐and small‐scale purification of mammalian 26S proteasomes. Methods Enzymol. 2005; 399: 227–240. PubMed
Pichler V, Heffeter P, Valiahdi SM, Kowol CR, Egger A, Berger W, et al. Unsymmetric mono- and dinuclear platinum(IV) complexes featuring an ethylene glycol moiety: Synthesis, characterization, and biological activity. J Med Chem. 2012; 55: 11052–11061. 10.1021/jm301645g PubMed DOI PMC
Štarha P, Marek J, Trávníček Z. Cisplatin and oxaliplatin derivatives involving 7-azaindole: Structural characterisations. Polyhedron. 2012; 33: 404–409.
Kelland LR, Sharp SY, O’Neill CF, Raynaud FI, Beale PJ, Judson IR. Mini-review: discovery and development of platinum complexes designed to circumvent cisplatin resistance. J Inorg Biochem. 1999; 77: 111–115 PubMed
Marverti G, Cusumano M, Ligabue A, Di Pietro ML, Vainiglia PA, Ferrari A, et al. Studies on the anti-proliferative effects of novel DNA-intercalating bipyridyl–thiourea–Pt(II) complexes against cisplatin-sensitive and-resistant human ovarian cancer cells. J Inorg Biochem. 2008; 102: 699–712 PubMed
Romero-Canelón I, Sadler PJ. Next-generation metal anticancer complexes: Multitargeting via redox modulation. Inorg Chem. 2013; 52: 12276−12291 10.1021/ic400835n PubMed DOI
Lewandowicz GM, Britt P, Elgie AW, Williamson CJ, Coley HM, Hall AG, et al. Cellular glutathione content, in vitro chemoresponse, and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer. Gynecol Oncol. 2002; 85:298–304 PubMed
Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005; 65: 948–956 PubMed
Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y. Mechanisms of platinum drug resistance. Trends in Pharmacological Sciences. 2005; 26: 113–116 PubMed
Dvorak Z, Cvek B. The value of proteasome inhibition in cancer. Can the old drug, disulfiram, have a bright new future as a novel proteasome inhibitor? Drug Discov. Today. 2008; 13: 716–722 PubMed
In vitro anticancer active cis-Pt(II)-diiodido complexes containing 4-azaindoles