Pharmacological and molecular effects of platinum(II) complexes involving 7-azaindole derivatives
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24603594
PubMed Central
PMC3948342
DOI
10.1371/journal.pone.0090341
PII: PONE-D-13-52907
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- cisplatina farmakologie MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- imunohistochemie MeSH
- indoly chemie MeSH
- Kaplanův-Meierův odhad MeSH
- kaspasa 3 metabolismus MeSH
- kaspasa 8 metabolismus MeSH
- lidé MeSH
- lymfoidní leukemie farmakoterapie patologie MeSH
- magnetická rezonanční spektroskopie MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- myši inbrední DBA MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- stabilita léku MeSH
- termodynamika MeSH
- viabilita buněk účinky léků MeSH
- výsledek terapie MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 7-azaindole dimer MeSH Prohlížeč
- antitumorózní látky MeSH
- cisplatina MeSH
- indoly MeSH
- kaspasa 3 MeSH
- kaspasa 8 MeSH
- nádorový supresorový protein p53 MeSH
- organoplatinové sloučeniny MeSH
The in vitro antitumour activity studies on a panel of human cancer cell lines (A549, HeLa, G-361, A2780, and A2780R) and the combined in vivo and ex vivo antitumour testing on the L1210 lymphocytic leukaemia model were performed on the cis-[PtCl2(naza)2] complexes (1-3) involving the 7-azaindole derivatives (naza). The platinum(II) complexes showed significantly higher in vitro cytotoxic effects on cell-based models, as compared with cisplatin, and showed the ability to avoid the acquired resistance of the A2780R cell line to cisplatin. The in vivo testing of the complexes (applied at the same dose as cisplatin) revealed their positive effect on the reduction of cancerous tissues volume, even if it is lower than that of cisplatin, however, they also showed less serious adverse effects on the healthy tissues and the health status of the treated mice. The results of ex vivo assays revealed that the complexes 1-3 were able to modulate the levels of active forms of caspases 3 and 8, and the transcription factor p53, and thus activate the intrinsic (mitochondrial) pathway of apoptosis. The pharmacological observations were supported by both the histological and immunohistochemical evaluation of isolated cancerous tissues. The applicability of the prepared complexes and their fate in biological systems, characterized by the hydrolytic stability and the thermodynamic aspects of the interactions with cysteine, reduced glutathione, and human serum albumin were studied by the mass spectrometry and isothermal titration calorimetric experiments.
Zobrazit více v PubMed
Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nature Rev Cancer 7: 573–584. PubMed
Kelland LR, Farrell NP (2000) Platinum-Based Drugs in Cancer Therapy. Humana: Totowa.
Rosenberg B, VanCamp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205: 698–699. PubMed
Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds - a new class of potent antitumour agents. Nature 222: 385–386. PubMed
Harrap KR (1985) Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat Rev 12: 21–33. PubMed
Akaza H, Togashi M, Nishio Y, Miki T, Kotake T, et al. (1992) Phase II study of cis-diammine(glycolato)platinum, 254–S, in patients with advanced germ-cell testicular cancer, prostatic cancer, and transitional-cell carcinoma of the urinary tract. Cancer Chemother Pharmacol 31: 187–192. PubMed
Kidani Y, Inagaki K, Iigo M, Hoshi A, Kuretani K (1978) Anti-tumor activity of 1,2-diaminocyclohexaneplatinum complexes against sarcoma-180 ascites form. J Med Chem 21: 1315–1318. PubMed
McKeage MJ (2001) Lobaplatin: a new antitumour platinum drug. Expert Opin Inv Drugs 10: 119–128. PubMed
Shen DW, Pouliot LM, Hall MD, Gottesman MM (2012) Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes. Pharmacol Rev 64: 706–721. PubMed PMC
Galanski M, Yasemi A, Slaby S, Jakupec MA, Arion VB, et al. (2004) Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible. Eur J Med Chem 39: 707–714. PubMed
Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR (1998) In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer 77: 366–373. PubMed PMC
Holford J, Raynaud F, Murrer BA, Grimaldi K, Hartley JA, et al. (1998) Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum coordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473). Anticancer Drug Design 13: 1–18. PubMed
Sharp SY, O'Neill CF, Rogers PM, Boxall FE, Kelland LR (2002) Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin. Eur J Cancer 38: 2309–2315. PubMed
Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39: 8113–8127. PubMed
Pogozheva D, Baudrona SA, Rogez G, Hosseini MW (2013) From discrete tricyanovinylene appended 7-azaindole copper(II) paddlewheel to an infinite 1D network: Synthesis, crystal structure and magnetic properties. Polyhedron 52: 1329–1335.
Tsoureas N, Nunn J, Bevis T, Haddow MF, Hamilton A, et al. (2011) Strong agostic-type interactions in ruthenium benzylidene complexes containing 7-azaindole based scorpionate ligands. Dalton Trans 40: 951–958. PubMed
Ruiz J, Rodríguez V, de Haro C, Espinosa A, Péerez J, et al. (2010) New 7-azaindole palladium and platinum complexes: crystal structures and theoretical calculations. In vitro anticancer activity of the platinum compounds. Dalton Trans 39: 3290–3301. PubMed
Pierce LT, Cahill MM, Winfield HJ, McCarthy FO (2012) Synthesis and identification of novel indolo[2,3-a]pyrimido[5,4-c]carbazoles as a new class of anti-cancer agents. Eur J Med Chem 56: 292–300. PubMed
Hong S, Kim J, Seo JH, Jung KH, Hong SS, et al. (2012) Design, Synthesis, and Evaluation of 3,5-Disubstituted 7-Azaindoles as Trk Inhibitors with Anticancer and Antiangiogenic Activities. J Med Chem 55: 5337–5349. PubMed
Chevé G, Bories C, Fauvel B, Picot F, Tible A, et al. (2012) De novo design, synthesis and pharmacological evaluation of new azaindole derivatives as dual inhibitors of Abl and Src kinases. Med Chem Commun 3: 788–800.
Dyke HJ, Price S, Williams K (2010) US Patent 20100216768.
Štarha P, Marek J, Trávníček Z (2012) Cisplatin and oxaliplatin derivatives involving 7-azaindole: Structural characterisations. Polyhedron 33: 404–409.
Štarha P, Trávníček Z, Popa A, Popa I, Muchová T, et al. (2012) How to modify 7-azaindole to form cytotoxic Pt(II) complexes: Highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J Inorg Biochem 115: 57–63. PubMed
Muchová T, Prachařová J, Štarha P, Olivová R, Vrána O, et al. (2013) Insight into the toxic effects of cis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J Biol Inorg Chem 18: 579–589. PubMed
Salemi G, Gueli MC, D'Amelio M, Saia V, Mangiapane P, et al. (2009) Blood levels of homocysteine, cysteine, glutathione, folic acid, and vitamin B12 in the acute phase of atherothrombotic stroke. Neurol Sci 30: 361–364. PubMed
Trávníček Z, Matiková-Maľarová M, Novotná R, Vančo J, Štěpánková K, et al. (2011) In vitro and in vivo biological activity screening of Ru(III) complexes involving 6-benzylaminopurine derivates with higher pro-apoptotic activity than NAMI-A. J Inorg Biochem 105: 937–948. PubMed
Talhouk R, Chin J, Unemori E, Werb Z, Bissell M (1991) Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development 112: 439–49. PubMed PMC
Reedijk J (1999) Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 99: 2499–2510. PubMed
Nagle PS, Rodriguez F, Nguyen B, Wilson WD, Rozas I (2012) High DNA Affinity of a Series of Peptide Linked Diaromatic Guanidinium-like Derivatives. J Med Chem 55: 4397–4406. PubMed
Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2006) Thermodynamics of the As(III)-Thiol Interaction: Arsenite and Monomethylarsenite Complexes with Glutathione, Dihydrolipoic Acid, and Other Thiol Ligands. Inorg Chem 44: 2964–2972. PubMed
Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of Antitumour Metallodrugs with Serum Proteins: Advances in Characterization Using Modern Analytical Methodology. Chem Rev 106: 2224–2248. PubMed
Esposito BA, Najjar R (2002) Interactions of antitumoural platinum-group metallodrugs with albumin. Coord Chem Rev 232: 137–149.
Brown SD, Trotter KD, Sutcliffe OB, Plumb JA, Waddell B, et al. (2012) Combining aspects of the platinum anticancer drugs picoplatin and BBR3464 to synthesize a new family of sterically hindered dinuclear complexes; their synthesis, binding kinetics and cytotoxicity. Dalton Trans 41: 11330–11339. PubMed
Carreira M, Calvo-Sanjuán R, Sanaú M, Zhao X, Magliozzo RS, et al. (2012) Cytotoxic hydrophilic iminophosphorane coordination compounds of d8 metals. Studies of their interactions with DNA and HSA. J Inorg Biochem 116: 204–214. PubMed PMC
Quirante J, Ruiz D, Gonzalez A, López C, Cascante M, et al. (2011) Platinum(II) and palladium(II) complexes with (N,N′) and (C,N,N′)− ligands derived from pyrazole as anticancer and antimalarial agents: Synthesis, characterization and in vitro activities. J Inorg Biochem 105: 1720–1728. PubMed
Carland M, Grannas MJ, Cairns MJ, Roknic VJ, Denny WA, et al. (2010) Substituted 9-aminoacridine-4-carboxamides tethered to platinum(II)diamine complexes: Chemistry, cytotoxicity and DNA sequence selectivity. J Inorg Biochem 104: 815–819. PubMed
Vrzal R, Štarha P, Dvořák Z, Trávníček Z (2010) Evaluation of in vitro cytotoxicity and hepatotoxicity of platinum(II) and palladium(II) oxalato complexes with adenine derivatives as carrier ligands. J Inorg Biochem 104: 1130–1132. PubMed
de Mier-Vinué J, Gay M, Montaña AM, Sáez RI, Moreno V, et al. (2008) Synthesis, biophysical studies, and antiproliferative activity of platinum(II) complexes having 1,2-bis(aminomethyl)carbobicyclic ligands. J Med Chem 51: 424–431. PubMed
Yamori T (2003) Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother Pharmacol 52: S74–S79. PubMed
Margiotta N, Denora N, Ostuni R, Laquintana V, Anderson A, et al. (2010) Platinum(II) complexes with bioactive carrier ligands having high affinity for the translocator protein. J Med Chem 53: 5144–5154. PubMed
Xu G, Yan Z, Wamg N, Liu Z (2011) Synthesis and cytotoxicity of cis-dichloroplatinum (II) complexes of (1S,3S)-1,2,3,4-tetrahydroisoquinolines. Eur J Med Chem 46: 356–363. PubMed
Komeda S, Takayama H, Suzuki T, Odani A, Yamori T, et al. (2013) Synthesis of antitumour azolato-bridged dinuclear platinum(II) complexes within vivo antitumour efficacy and uniquein vitro cytotoxicity profiles. Metallomics 5: 461–468. PubMed
World Health Organization (2009) World Health Statistics 2009. Available: http://www.who.int/whosis/whostat/2009/en/. Accessed 2014 Feb 13.
Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumourigenesis: an evolving paradigm. Cell Mol Life Sci 68: 3853–3868. PubMed PMC
Zhang B, Ramesh G, Uematsu S, Akira S, Reevers WB (2008) TLR4 Signaling Mediates Inflammation and Tissue Injury in Nephrotoxicity. J Am Soc Nephrol 19: 923–932. PubMed PMC
Reedijk J (1987) The mechanism of action of platinum anti-tumor drugs. Pure Appl Chem 59: 181–192.
Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265–7279. PubMed
Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark GR (1998) The p53 Network. J Biol Chem 273: 1–4. PubMed
Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, et al. (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809. PubMed
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776. PubMed
Chauhan P, Sodhi A, Shrivastava A (2009) Cisplatin primes murine peritoneal macrophages for enhanced expression of nitric oxide, proinflammatory cytokines, TLRs, transcription factors and activation of MAP kinases upon co-incubation with L929cells. Immunobiology 214: 197–209. PubMed
In vitro anticancer active cis-Pt(II)-diiodido complexes containing 4-azaindoles