Structural basis of the interaction between the putative adhesion-involved and iron-regulated FrpD and FrpC proteins of Neisseria meningitidis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28084396
PubMed Central
PMC5233953
DOI
10.1038/srep40408
PII: srep40408
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie genetika MeSH
- buněčná adheze genetika MeSH
- difrakce rentgenového záření MeSH
- lidé MeSH
- lipoproteiny chemie metabolismus MeSH
- membránové proteiny chemie genetika MeSH
- Neisseria meningitidis chemie genetika MeSH
- periplazmatické vazebné proteiny chemie metabolismus MeSH
- proteiny vázající železo chemie metabolismus MeSH
- proteiny vnější bakteriální membrány metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- železo chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- frpC protein, Neisseria meningitidis MeSH Prohlížeč
- lipoproteiny MeSH
- membránové proteiny MeSH
- periplazmatické vazebné proteiny MeSH
- proteiny vázající železo MeSH
- proteiny vnější bakteriální membrány MeSH
- železo MeSH
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
EMBL Hamburg Outstation c o DESY Notkestrasse 85 D 22603 Hamburg Germany
Institute of Microbiology Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Pizza M. & Rappuoli R. Neisseria meningitidis: pathogenesis and immunity. Curr. Opin. Microbiol. 23, 68–72 (2015). PubMed
Rosenstein N. E., Perkins B. A., Stephens D. S., Popovic T. & Hughes J. M. Meningococcal disease. N. Engl. J. Med. 344, 1378–1388 (2001). PubMed
Rouphael N. G. & Stephens D. S. Neisseria meningitidis: biology, microbiology, and epidemiology. Methods Mol. Biol. 799, 1–20 (2012). PubMed PMC
Stephens D. S., Greenwood B. & Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369, 2196–2210 (2007). PubMed
Hill D. J., Griffiths N. J., Borodina E. & Virji M. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin. Sci. 118, 547–564 (2010). PubMed PMC
Capecchi B. et al.. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol. Microbiol. 55, 687–698 (2005). PubMed
Mattick J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002). PubMed
Sadarangani M., Pollard A. J. & Gray-Owen S. D. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev. 35, 498–514 (2011). PubMed
Scarselli M. et al.. Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol. Microbiol. 61, 631–644 (2006). PubMed
Grifantini R. et al.. Identification of iron-activated and –repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. USA 100, 9542–9547 (2003). PubMed PMC
Basler M. et al.. The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C. Proteomics 6, 6194–6206 (2006). PubMed
Thompson S. A., Wang L. L., West A. & Sparling P. F. Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J. Bacteriol. 175, 811–818 (1993). PubMed PMC
Osicka R., Kalmusova J., Krizova P. & Sebo P. Neisseria meningitidis RTX protein FrpC induces high levels of serum antibodies during invasive disease: polymorphism of frpC alleles and purification of recombinant FrpC. Infect. Immun. 69, 5509–5519 (2001). PubMed PMC
Linhartova I. et al.. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112 (2010). PubMed PMC
Bumba L. et al.. Calcium-driven folding of RTX domain β-rolls ratchets translocation of RTX proteins through Type I secretion ducts. Mol. Cell 62, 47–62 (2016). PubMed
Forman S. et al.. Neisseria meningitidis RTX proteins are not required for virulence in infant rats. Infect. Immun. 71, 2253–2257 (2003). PubMed PMC
Linhartova I. et al.. Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells. FEMS Microbiol Lett. 263, 109–118 (2006). PubMed
Osicka R. et al.. A novel “Clip-and-link” activity of repeat in toxin (RTX) proteins from Gram-negative pathogens. J. Biol. Chem. 279, 24944–24956 (2004). PubMed
Matyska Liskova P. et al.. Probing the Ca2+-assisted π-π interaction during Ca2+-dependent protein folding. Soft Matter 12, 531–541 (2016). PubMed
Kuban V., Novacek J., Bumba L. & Zidek L. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis. Biomol. NMR Assign. 9, 435–440 (2015). PubMed
Sadilkova L. et al.. Single-step affinity purification of recombinant proteins using a self-excising module from Neisseria meningitidis FrpC. Protein Sci. 17, 1834–1843 (2008). PubMed PMC
Prochazkova K. et al.. The Neisseria meningitidis outer membrane lipoprotein FrpD binds the RTX protein FrpC. J. Biol. Chem. 280, 3251–3258 (2005). PubMed
Kovacs-Simon A., Titball R. W. & Michell S. L. Lipoproteins of bacterial pathogens. Infect. Immun. 79, 548–561 (2011). PubMed PMC
Sviridova E. et al.. Crystallization and preliminary crystallographic characterization of the iron-regulated outer membrane lipoprotein FrpD from Neisseria meningitidis. Acta Cryst. F 66, 1119–1123 (2010). PubMed PMC
Ezezika O. C. et al.. Incompatibility with formin Cdc12p prevents human profilin from substituting for fission yeast profiling: insights from crystal structures of fission yeast profiling. J. Biol. Chem. 284, 2088–2097 (2009). PubMed PMC
Prlic A. et al.. Precalculated protein structure alignments at the RCSB PDB website. Bioinformatics 26, 2983–2985 (2010). PubMed PMC
Shindyalov I. N. & Bourne P. E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998). PubMed
Bumba L., Sviridova E., Kuta Smatanova I., Rezacova P. & Veverka V. Backbone resonance assignments of the outer membrane lipoprotein FrpD from Neisseria meningitidis. Biomol. NMR Assign. 8, 53–55 (2014). PubMed
Williamson M. P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 7, 1–16 (2013). PubMed
Muller D. R. et al.. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal. Chem. 73, 1927–1934 (2001). PubMed
Young M. M. et al.. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl. Acad. Sci. USA 97, 5802–5806 (2000). PubMed PMC
Bakkes P. J., Jenewein S., Smits S. H., Holland I. B. & Schmitt L. The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type 1 secretion system. J. Biol. Chem. 285, 40573–40580 (2010). PubMed PMC
Staab J. F., Bradway S. D., Fidel P. L. & Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283, 1535–1538 (1999). PubMed
Sutherland T. C., Quattroni P., Exley R. M. & Tang C. M. Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium. Infect. Immun. 78, 3832–3847 (2010). PubMed PMC
Schaller A. et al.. Characterization of apxIVA, a new RTX determinant of Actinobacillus pleuropneumoniae. Microbiology 145, 2105–2116 (1999). PubMed
Liu J. et al.. In vivo induced RTX toxin ApxIVA is essential for the full virulence of A. pleuropneumoniae. Vet. Microbiol. 137, 282–289 (2009). PubMed
Mueller U. et al.. Facilities for macromolecular crystallography at Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 (2012). PubMed PMC
Minor W., Cymborowski M., Otwinowski Z. & Chruszcz M. HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859866 (2006). PubMed
Perrakis A., Morris R. & Lamzin V. S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999). PubMed
Cowtan K. Error estimation and bias correction in phase-improvement calculations. Acta Crystallogr. D Biol. Crystallogr. 55, 1555–1567 (1999). PubMed
Vagin A. & Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 56, 1622–1624 (2000). PubMed
Murshudov G. N. et al.. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011). PubMed PMC
Emsley P. & Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Chen V. B. et al.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). PubMed PMC
Krieger E., Koraimann G. & Vriend G. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 47, 393–402 (2002). PubMed
Holm L. & Sandler C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993). PubMed
Orengo C. et al.. CATH – a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997). PubMed
Krissinel E. & Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004). PubMed
Blanchet C. E. et al.. Instrumental setup for high throughput solution scattering at the X33 beamline of EMBL-Hamburg. J. Appl. Cryst. 45, 489–495 (2012).
Franke D. & Svergun D. I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Cryst. 42, 342–346 (2009). PubMed PMC
Kukacka Z., Rosulek M., Strohalm M., Kavan D. & Novak P. Mapping protein structural changes by quantitative cross-linking. Methods 89, 112–20 (2015). PubMed