Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to β-Lactams
Language English Country United States Media electronic-print
Document type Journal Article
PubMed
28115345
PubMed Central
PMC5365698
DOI
10.1128/aac.02173-16
PII: AAC.02173-16
Knihovny.cz E-resources
- Keywords
- RelA, antibiotics, mupirocin, persistence, ppGpp, ribosomes, thiostrepton, tolerance, trimethoprim, β-lactam,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- beta-Lactams pharmacology MeSH
- Chloramphenicol pharmacology MeSH
- Tetrahydrofolate Dehydrogenase genetics metabolism MeSH
- Escherichia coli chemistry genetics metabolism MeSH
- Guanosine Tetraphosphate analogs & derivatives metabolism MeSH
- Isoleucine-tRNA Ligase genetics MeSH
- Drug Interactions MeSH
- Ligases antagonists & inhibitors genetics metabolism MeSH
- Mupirocin pharmacology MeSH
- Protein Biosynthesis drug effects MeSH
- Ribosomes drug effects metabolism MeSH
- RNA, Transfer genetics metabolism MeSH
- Subcellular Fractions chemistry drug effects metabolism MeSH
- Tetracycline pharmacology MeSH
- Thiostrepton pharmacology MeSH
- Drug Tolerance * MeSH
- Trimethoprim pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- adenosine 5',5'''-triphosphoguanosine-3'''-diphosphate MeSH Browser
- Anti-Bacterial Agents MeSH
- beta-Lactams MeSH
- Chloramphenicol MeSH
- Tetrahydrofolate Dehydrogenase MeSH
- guanosine 3',5'-polyphosphate synthetases MeSH Browser
- Guanosine Tetraphosphate MeSH
- Isoleucine-tRNA Ligase MeSH
- Ligases MeSH
- Mupirocin MeSH
- RNA, Transfer MeSH
- Tetracycline MeSH
- Thiostrepton MeSH
- Trimethoprim MeSH
The nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance, and virulence. During amino acid starvation, the Escherichia coli (p)ppGpp synthetase RelA is activated by deacylated tRNA in the ribosomal A-site. An increase in (p)ppGpp is believed to drive the formation of antibiotic-tolerant persister cells, prompting the development of strategies to inhibit (p)ppGpp synthesis. We show that in a biochemical system from purified E. coli components, the antibiotic thiostrepton efficiently inhibits RelA activation by the A-site tRNA. In bacterial cultures, the ribosomal inhibitors thiostrepton, chloramphenicol, and tetracycline all efficiently abolish accumulation of (p)ppGpp induced by the Ile-tRNA synthetase inhibitor mupirocin. This abolishment, however, does not reduce the persister level. In contrast, the combination of dihydrofolate reductase inhibitor trimethoprim with mupirocin, tetracycline, or chloramphenicol leads to ampicillin tolerance. The effect is independent of RelA functionality, specific to β-lactams, and not observed with the fluoroquinolone norfloxacin. These results refine our understanding of (p)ppGpp's role in antibiotic tolerance and persistence and demonstrate unexpected drug interactions that lead to tolerance to bactericidal antibiotics.
Department of Molecular Biology Umeå University Umeå Sweden
Laboratory for Molecular Infection Medicine Sweden Umeå University Umeå Sweden
See more in PubMed
Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. doi:10.1038/nrmicro3448. PubMed DOI PMC
Dalebroux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi:10.1038/nrmicro2720. PubMed DOI
Rodionov DG, Ishiguro EE. 1995. Direct correlation between overproduction of guanosine 3′,5′-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli. J Bacteriol 177:4224–4229. doi:10.1128/jb.177.15.4224-4229.1995. PubMed DOI PMC
Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppee JY, Ghigo JM, Beloin C. 2013. Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144. doi:10.1371/journal.pgen.1003144. PubMed DOI PMC
Gerdes K, Maisonneuve E. 2012. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123. doi:10.1146/annurev-micro-092611-150159. PubMed DOI
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–986. doi:10.1126/science.1211037. PubMed DOI PMC
Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–548. doi:10.1016/j.cell.2014.02.050. PubMed DOI
Atkinson GC, Tenson T, Hauryliuk V. 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6:e23479. doi:10.1371/journal.pone.0023479. PubMed DOI PMC
Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. doi:10.1146/annurev.micro.62.081307.162903. PubMed DOI
Haseltine WA, Block R. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A 70:1564–1568. doi:10.1073/pnas.70.5.1564. PubMed DOI PMC
Cashel M, Gallant J. 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221:838–841. doi:10.1038/221838a0. PubMed DOI
Brown A, Fernandez IS, Gordiyenko Y, Ramakrishnan V. 2016. Ribosome-dependent activation of stringent control. Nature 534:277–280. doi:10.1038/nature17675. PubMed DOI PMC
Arenz S, Abdelshahid M, Sohmen D, Payoe R, Starosta AL, Berninghausen O, Hauryliuk V, Beckmann R, Wilson DN. 2016. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Res 44:6471–6481. doi:10.1093/nar/gkw470. PubMed DOI PMC
Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, Korostelev AA. 2016. Ribosome *RelA structures reveal the mechanism of stringent response activation. eLife 5:e17029. doi:10.7554/eLife.17029. PubMed DOI PMC
Sprinzl M, Richter D. 1976. Free 3′-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli. Eur J Biochem 71:171–176. doi:10.1111/j.1432-1033.1976.tb11103.x. PubMed DOI
Wagner EG, Kurland CG. 1980. Escherichia coli elongation factor G blocks stringent factor. Biochemistry 19:1234–1240. doi:10.1021/bi00547a030. PubMed DOI
Avarbock D, Avarbock A, Rubin H. 2000. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry 39:11640–11648. PubMed
Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y. 2008. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67:291–304. PubMed
Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, Marahiel MA, Bange G. 2015. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone. Proc Natl Acad Sci U S A 112:13348–13353. doi:10.1073/pnas.1505271112. PubMed DOI PMC
Gaca AO, Kudrin P, Colomer-Winter C, Beljantseva J, Liu K, Anderson B, Wang JD, Rejman D, Potrykus K, Cashel M, Hauryliuk V, Lemos JA. 2015. From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of Enterococcus faecalis. J Bacteriol 197:2908–2919. doi:10.1128/JB.00324-15. PubMed DOI PMC
Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S. 2012. Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog 8:e1002925. doi:10.1371/journal.ppat.1002925. PubMed DOI PMC
de la Fuente-Nunez C, Reffuveille F, Haney EF, Straus SK, Hancock RE. 2014. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152. doi:10.1371/journal.ppat.1004152. PubMed DOI PMC
Reffuveille F, de la Fuente-Nunez C, Mansour S, Hancock RE. 2014. A Broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58:5363–5371. doi:10.1128/AAC.03163-14. PubMed DOI PMC
Andresen L, Varik V, Tozawa Y, Jimmy S, Lindberg S, Tenson T, Hauryliuk V. 2016. Auxotrophy-based high-throughput screening assay for the identification of Bacillus subtilis stringent response inhibitors. Sci Rep 6:35824. doi:10.1038/srep35824. PubMed DOI PMC
Andresen L, Tenson T, Hauryliuk V. 2016. Cationic bactericidal peptide 1018 does not specifically target the stringent response alarmone (p)ppGpp. Sci Rep 6:36549. doi:10.1038/srep36549. PubMed DOI PMC
Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. 2012. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res 40:360–370. doi:10.1093/nar/gkr623. PubMed DOI PMC
Modolell J, Cabrer B, Parmeggiani A, Vazquez D. 1971. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A 68:1796–1800. doi:10.1073/pnas.68.8.1796. PubMed DOI PMC
Brandi L, Marzi S, Fabbretti A, Fleischer C, Hill WE, Gualerzi CO, Stephen Lodmell J. 2004. The translation initiation functions of IF2: targets for thiostrepton inhibition. J Mol Biol 335:881–894. doi:10.1016/j.jmb.2003.10.067. PubMed DOI
Haseltine WA, Block R, Gilbert W, Weber K. 1972. MSI and MSII made on ribosome in idling step of protein synthesis. Nature 238:381–384. doi:10.1038/238381a0. PubMed DOI
Knutsson Jenvert RM, Holmberg Schiavone L. 2005. Characterization of the tRNA and ribosome-dependent pppGpp-synthesis by recombinant stringent factor from Escherichia coli. FEBS J 272:685–695. doi:10.1111/j.1742-4658.2004.04502.x. PubMed DOI
Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P. 2008. Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol Cell 30:26–38. doi:10.1016/j.molcel.2008.01.009. PubMed DOI
Friesen JD, Fiil NP, Parker JM, Haseltine WA. 1974. A new relaxed mutant of Escherichia coli with an altered 50S ribosomal subunit. Proc Natl Acad Sci U S A 71:3465–3469. doi:10.1073/pnas.71.9.3465. PubMed DOI PMC
Wang L, Yang F, Zhang D, Chen Z, Xu RM, Nierhaus KH, Gong W, Qin Y. 2012. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 19:403–410. doi:10.1038/nsmb.2254. PubMed DOI
Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN. 2014. Tetracycline antibiotics and resistance mechanisms. Biol Chem 395:559–575. PubMed
Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. 2002. Dissection of the mechanism for the stringent factor RelA. Mol Cell 10:779–788. doi:10.1016/S1097-2765(02)00656-1. PubMed DOI
Midgley JE, Gray WJ. 1971. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. Biochem J 122:149–159. PubMed PMC
Cashel M. 1969. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem 244:3133–3141. PubMed
Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V. 2012. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep 13:835–839. doi:10.1038/embor.2012.106. PubMed DOI PMC
Thompson J, Cundliffe E, Dahlberg AE. 1988. Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre. J Mol Biol 203:457–465. doi:10.1016/0022-2836(88)90012-5. PubMed DOI
Agirrezabala X, Fernandez IS, Kelley AC, Carton DG, Ramakrishnan V, Valle M. 2013. The ribosome triggers the stringent response by RelA via a highly distorted tRNA. EMBO Rep 14:811–816. doi:10.1038/embor.2013.106. PubMed DOI PMC
Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL. 2013. The magic spot: a ppGpp binding site on Escherichia coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 50:420–429. doi:10.1016/j.molcel.2013.03.021. PubMed DOI PMC
Liu K, Myers AR, Pisithkul T, Claas KR, Satyshur KA, Amador-Noguez D, Keck JL, Wang JD. 2015. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol Cell 57:735–749. doi:10.1016/j.molcel.2014.12.037. PubMed DOI PMC
Krasny L, Gourse RL. 2004. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483. doi:10.1038/sj.emboj.7600423. PubMed DOI PMC
Gleckman R, Blagg N, Joubert DW. 1981. Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy 1:14–20. PubMed
Hughes J, Mellows G. 1978. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J 176:305–318. doi:10.1042/bj1760305. PubMed DOI PMC
Pestka S. 1975. The thiostrepton group of antibiotics, p 551–573. In Corcoran JW, Hahn FE (ed), Antibiotics: mechanism of antimicrobial and antitumor agents, vol 3 Springer-Verlag, New York, NY.
Lopez JM, Dromerick A, Freese E. 1981. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J Bacteriol 146:605–613. PubMed PMC
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. 2012. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241. doi:10.1016/j.molcel.2012.08.009. PubMed DOI PMC
Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330. doi:10.1038/nrmicro.2016.34. PubMed DOI
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. doi:10.1073/pnas.120163297. PubMed DOI PMC
Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140–1150. doi:10.1016/j.cell.2013.07.048. PubMed DOI
Korch SB, Henderson TA, Hill TM. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50:1199–1213. doi:10.1046/j.1365-2958.2003.03779.x. PubMed DOI
Varik V, Oliveira SR, Hauryliuk V, Tenson T. 2016. Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Sci Rep 6:22308. doi:10.1038/srep22308. PubMed DOI PMC
Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T. 2006. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72:2586–2593. doi:10.1128/AEM.72.4.2586-2593.2006. PubMed DOI PMC
Sezonov G, Joseleau-Petit D, D'Ari R. 2007. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746–8749. doi:10.1128/JB.01368-07. PubMed DOI PMC
Egli T. 2015. Microbial growth and physiology: a call for better craftsmanship. Front Microbiol 6:287. PubMed PMC
Luidalepp H, Joers A, Kaldalu N, Tenson T. 2011. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 193:3598–3605. doi:10.1128/JB.00085-11. PubMed DOI PMC
Potrykus K, Murphy H, Philippe N, Cashel M. 2011. ppGpp is the major source of growth rate control in Escherichia coli. Environ Microbiol 13:563–575. doi:10.1111/j.1462-2920.2010.02357.x. PubMed DOI PMC
Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498. doi:10.1128/AAC.27.4.495. PubMed DOI PMC
Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A. 1986. The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304. PubMed
Murray KD, Bremer H. 1996. Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. J Mol Biol 259:41–57. doi:10.1006/jmbi.1996.0300. PubMed DOI
Uzan M, Danchin A. 1976. A rapid test for the relA mutation in Escherichia coli. Biochem Biophys Res Commun 69:751–758. doi:10.1016/0006-291X(76)90939-6. PubMed DOI
Kwan BW, Valenta JA, Benedik MJ, Wood TK. 2013. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 57:1468–1473. doi:10.1128/AAC.02135-12. PubMed DOI PMC
Rodionov DG, Pisabarro AG, de Pedro MA, Kusser W, Ishiguro EE. 1995. Beta-lactam-induced bacteriolysis of amino acid-deprived Escherichia coli is dependent on phospholipid synthesis. J Bacteriol 177:992–997. doi:10.1128/jb.177.4.992-997.1995. PubMed DOI PMC
Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP. 2010. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 6:e1000944. doi:10.1371/journal.ppat.1000944. PubMed DOI PMC
Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A. 2013. Whole-genome sequencing reveals a link between beta-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 19:153–159. doi:10.1089/mdr.2013.0053. PubMed DOI PMC
Heath RJ, Jackowski S, Rock CO. 1994. Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (PlsB). J Biol Chem 269:26584–26590. PubMed
Hugonnet JE, Mengin-Lecreulx D, Monton A, den Blaauwen T, Carbonnelle E, Veckerle C, Brun YV, van Nieuwenhze M, Bouchier C, Tu K, Rice LB, Arthur M. 2016. Factors essential for l,d-transpeptidase-mediated peptidoglycan cross-linking and beta-lactam resistance in Escherichia coli. eLife 5:e19469. doi:10.7554/eLife.19469. PubMed DOI PMC
Myers CL, Hang PC, Ng G, Yuen J, Honek JF. 2010. Semi-synthetic analogues of thiostrepton delimit the critical nature of tail region modifications in the control of protein biosynthesis and antibacterial activity. Bioorg Med Chem 18:4231–4237. doi:10.1016/j.bmc.2010.04.098. PubMed DOI
Zhang F, Kelly WL. 2012. In vivo production of thiopeptide variants. Methods Enzymol 516:3–24. doi:10.1016/B978-0-12-394291-3.00022-8. PubMed DOI
Basak R, Bandyopadhyay R. 2013. Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29:4350–4356. doi:10.1021/la304836e. PubMed DOI
Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. 2006. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9:339–358. PubMed
Baumann S, Schoof S, Bolten M, Haering C, Takagi M, Shin-ya K, Arndt HD. 2010. Molecular determinants of microbial resistance to thiopeptide antibiotics. J Am Chem Soc 132:6973–6981. doi:10.1021/ja909317n. PubMed DOI
Porse BT, Leviev I, Mankin AS, Garrett RA. 1998. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol 276:391–404. doi:10.1006/jmbi.1997.1541. PubMed DOI
Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FVt Weir JR, Ramakrishnan V. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–694. doi:10.1126/science.1179700. PubMed DOI PMC
Laffler T, Gallant J. 1974. spoT, a new genetic locus involved in the stringent response in E. coli. Cell 1:27–30. doi:10.1016/0092-8674(74)90151-2. DOI
Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, Reid G. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob Agents Chemother 58:2089–2097. doi:10.1128/AAC.02552-13. PubMed DOI PMC
Amato SM, Brynildsen MP. 2015. Persister heterogeneity arising from a single metabolic stress. Curr Biol 25:2090–2098. doi:10.1016/j.cub.2015.06.034. PubMed DOI
Hofsteenge N, van Nimwegen E, Silander OK. 2013. Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of Escherichia coli. BMC Microbiol 13:25. doi:10.1186/1471-2180-13-25. PubMed DOI PMC
Wu N, He L, Cui P, Wang W, Yuan Y, Liu S, Xu T, Zhang S, Wu J, Zhang W, Zhang Y. 2015. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol 6:1003. PubMed PMC
Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. 2014. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 196:894–902. doi:10.1128/JB.01201-13. PubMed DOI PMC
Amato SM, Orman MA, Brynildsen MP. 2013. Metabolic control of persister formation in Escherichia coli. Mol Cell 50:475–487. doi:10.1016/j.molcel.2013.04.002. PubMed DOI
Johnson PJ, Levin BR. 2013. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 9:e1003123. doi:10.1371/journal.pgen.1003123. PubMed DOI PMC
Ocampo PS, Lazar V, Papp B, Arnoldini M, Abel zur Wiesch P, Busa-Fekete R, Fekete G, Pal C, Ackermann M, Bonhoeffer S. 2014. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 58:4573–4582. doi:10.1128/AAC.02463-14. PubMed DOI PMC
Chowdhury N, Kwan BW, Wood TK. 2016. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Sci Rep 6:20519. doi:10.1038/srep20519. PubMed DOI PMC
Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K. 2016. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051. doi:10.1038/nmicrobiol.2016.51. PubMed DOI
Orman MA, Brynildsen MP. 2013. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob Agents Chemother 57:3230–3239. doi:10.1128/AAC.00243-13. PubMed DOI PMC
Kaldalu N, Hauryliuk V, Tenson T. 2016. Persisters: as elusive as ever. Appl Microbiol Biotechnol 100:6545–6553. doi:10.1007/s00253-016-7648-8. PubMed DOI PMC
Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. 2010. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171–199. doi:10.1128/MMBR.00046-09. PubMed DOI PMC
Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M. 1991. Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA-null mutants can be eliminated by spoT-null mutations. J Biol Chem 266:5980–5990. PubMed
Just-Baringo X, Albericio F, Alvarez M. 2014. Thiopeptide engineering: a multidisciplinary effort towards future drugs. Angew Chem Int Ed Engl 53:6602–6616. doi:10.1002/anie.201307288. PubMed DOI
Antoun A, Pavlov MY, Tenson T, Ehrenberg MM. 2004. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering. Biol Proced Online 6:35–54. doi:10.1251/bpo71. PubMed DOI PMC
Jelenc PC, Kurland CG. 1979. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci U S A 76:3174–3178. doi:10.1073/pnas.76.7.3174. PubMed DOI PMC
Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878–2888. doi:10.1128/JB.184.11.2878-2888.2002. PubMed DOI PMC
Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. J Bacteriol 119:736–747. PubMed PMC
Kaldalu N, Joers A, Ingelman H, Tenson T. 2016. A general method for measuring persister levels in Escherichia coli cultures. Methods Mol Biol 1333:29–42. doi:10.1007/978-1-4939-2854-5_3. PubMed DOI
Monteferrante CG, Jirgensons A, Varik V, Hauryliuk V, Goessens WH, Hays JP. 2016. Evaluation of the characteristics of leucyl-tRNA synthetase (LeuRS) inhibitor AN3365 in combination with different antibiotic classes. Eur J Clin Microbiol Infect Dis 35:1857–1864. doi:10.1007/s10096-016-2738-1. PubMed DOI PMC