Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia

. 2017 ; 14 () : 28-36. [epub] 20161218

Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28123951
Odkazy

PubMed 28123951
PubMed Central PMC5222946
DOI 10.1016/j.nicl.2016.12.014
PII: S2213-1582(16)30251-0
Knihovny.cz E-zdroje

OBJECTIVES: The aim was to describe the contribution of basal ganglia (BG) thalamo-cortical circuitry to the whole-brain functional connectivity in focal epilepsies. METHODS: Interictal resting-state fMRI recordings were acquired in 46 persons with focal epilepsies. Of these 46, 22 had temporal lobe epilepsy: 9 left temporal (LTLE), 13 right temporal (RTLE); 15 had frontal lobe epilepsy (FLE); and 9 had parietal/occipital lobe epilepsy (POLE). There were 20 healthy controls. The complete weighted network was analyzed based on correlation matrices of 90 and 194 regions. The network topology was quantified on a global and regional level by measures based on graph theory, and connection-level changes were analyzed by the partial least square method. RESULTS: In all patient groups except RTLE, the shift of the functional network topology away from random was observed (normalized clustering coefficient and characteristic path length were higher in patient groups than in controls). Links contributing to this change were found in the cortico-subcortical connections. Weak connections (low correlations) consistently contributed to this modification of the network. The importance of regions changed: decreases in the subcortical areas and both decreases and increases in the cortical areas were observed in node strength, clustering coefficient and eigenvector centrality in patient groups when compared to controls. Node strength decreases of the basal ganglia, i.e. the putamen, caudate, and pallidum, were displayed in LTLE, FLE, and POLE. The connectivity within the basal ganglia-thalamus circuitry was not disturbed; the disturbance concerned the connectivity between the circuitry and the cortex. SIGNIFICANCE: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

Zobrazit více v PubMed

Alexander-Bloch A.F., Vértes P.E., Stidd R., Lalonde F., Clasen L., Rapoport J., Giedd J., Bullmore E.T., Gogtay N. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex. 2012 PubMed PMC

Allen P.J., Josephs O., Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage. 2000;12:230–239. PubMed

Bartolomei F., Bettus G., Stam C.J., Guye M. Interictal network properties in mesial temporal lobe epilepsy: a graph theoretical study from intracerebral recordings. Clin. Neurophysiol. 2013;124:2345–2353. PubMed

Bernhardt B.C., Chen Z., He Y., Evans A.C., Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb. Cortex. 2011;21:2147–2157. PubMed

Bettus G., Bartolomei F., Confort-Gouny S., Guedj E., Chauvel P., Cozzone P.J., Ranjeva J.-P., Guye M. Role of resting state functional connectivity MRI in presurgical investigation of mesial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry. 2010 PubMed

Billingsley R.L., McAndrews M.P., Crawley A.P., Mikulis D.J. Functional MRI of phonological and semantic processing in temporal lobe epilepsy. Brain. 2001;124:1218–1227. PubMed

Binnewijzend M.A.A., Adriaanse S.M., Flier W.M., Teunissen C.E., Munck J.C., Stam C.J., Scheltens P., Berckel B.N.M., Barkhof F., Wink A.M. Brain network alterations in Alzheimer's disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Hum. Brain Mapp. 2014;35:2383–2393. PubMed PMC

Bonacich P. Power and centrality: a family of measures. Am. J. Sociol. 1987;92(5):1170–1182.

Bonacich P. Some unique properties of eigenvector centrality. Soc. Networks. 2007;29:555–564.

Bonilha L., Edwards J.C., Kinsman S.L., Morgan P.S., Fridriksson J., Rorden C., Rumboldt Z., Roberts D.R., Eckert M.A., Halford J.J. Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia. 2010;51:519–528. PubMed PMC

Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. PubMed

Chiang S., Haneef Z. Graph theory findings in the pathophysiology of temporal lobe epilepsy. Clin. Neurophysiol. 2014 PubMed PMC

Chiang S., Stern J.M., Engel J., Levin H.S., Haneef Z. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy. Epilepsy Res. 2014;108:1770–1781. PubMed PMC

Craddock R.C., James G.A., Holtzheimer P.E., Hu X.P., Mayberg H.S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 2012;33:1914–1928. PubMed PMC

Dupont S., Samson Y., de Moortele P.F., Samson S., Poline J.B., Hasboun D., Le Bihan D., Baulac M. Bilateral hemispheric alteration of memory processes in right medial temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry. 2002;73:478–485. PubMed PMC

Engel J., Jr., Thompson P.M., Stern J.M., Staba R.J., Bragin A., Mody I. Connectomics and epilepsy. Curr. Opin. Neurol. 2013;26:186. PubMed PMC

Englot D.J., Hinkley L.B., Kort N.S., Imber B.S., Mizuiri D., Honma S.M., Findlay A.M., Garrett C., Cheung P.L., Mantle M., Tarapore P.E., Knowlton R.C., Chang E.F., Kirsch H.E., Nagarajan S.S. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain. 2015 PubMed PMC

Federico P., Archer J.S., Abbott D.F., Jackson G.D. Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology. 2005;64:1125–1130. PubMed

Frings L., Schulze-Bonhage A., Spreer J., Wagner K. Remote effects of hippocampal damage on default network connectivity in the human brain. J. Neurol. 2009;256:2021–2029. PubMed

Garrison K.A., Scheinost D., Finn E.S., Shen X., Constable R.T. The (in) stability of functional brain network measures across thresholds. NeuroImage. 2015;118:651–661. PubMed PMC

Gießing C., Thiel C.M., Alexander-Bloch A.F., Patel A.X., Bullmore E.T. Human brain functional network changes associated with enhanced and impaired attentional task performance. J. Neurosci. 2013;33:5903–5914. PubMed PMC

Ginestet C.E., Nichols T.E., Bullmore E.T., Simmons A. Brain network analysis: separating cost from topology using cost-integration. PLoS One. 2011;6 PubMed PMC

Glover G.H., Li T.-Q., Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 2000;44:162–167. PubMed

Haneef Z., Lenartowicz A., Yeh H.J., Engel J., Jr., Stern J.M. Network analysis of the default mode network using functional connectivity MRI in temporal lobe epilepsy. J. Vis. Exp. 2014 PubMed PMC

Haneef Z., Lenartowicz A., Yeh H.J., Levin H.S., Engel J., Stern J.M. Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia. 2014;55:137–145. PubMed PMC

Horstmann M.-T., Bialonski S., Noennig N., Mai H., Prusseit J., Wellmer J., Hinrichs H., Lehnertz K. State dependent properties of epileptic brain networks: comparative graph—theoretical analyses of simultaneously recorded EEG and MEG. Clin. Neurophysiol. 2010;121:172–185. PubMed

Kaiser M. A tutorial in connectome analysis: topological and spatial features of brain networks. NeuroImage. 2011;57:892–907. PubMed

Keller S.S., O'Muircheartaigh J., Traynor C., Towgood K., Barker G.J., Richardson M.P. Thalamotemporal impairment in temporal lobe epilepsy: a combined MRI analysis of structure, integrity, and connectivity. Epilepsia. 2014;55:306–315. PubMed PMC

Kramer M.A., Cash S.S. Epilepsy as a disorder of cortical network organization. Neuroscience. 2012;18:360–372. PubMed PMC

Laufs H., Hamandi K., Salek-Haddadi A., Kleinschmidt A.K., Duncan J.S., Lemieux L. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum. Brain Mapp. 2007;28:1023–1032. PubMed PMC

Liao W., Zhang Z., Pan Z., Mantini D., Ding J., Duan X., Luo C., Lu G., Chen H. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One. 2010;5:27–29. PubMed PMC

Lin F.-H., Chu Y.-H., Hsu Y.-C., Lin J.-F.L., Tsai K.W.-K., Tsai S.-Y., Kuo W.-J. Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals. NeuroImage. 2015;121:69–77. PubMed

Liu M., Chen Z., Beaulieu C., Gross D.W. Disrupted anatomic white matter network in left mesial temporal lobe epilepsy. Epilepsia. 2014;55:674–682. PubMed

Lowe M.J., Mock B.J., Sorenson J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage. 1998;7:119–132. PubMed

Luo C., Qiu C., Guo Z., Fang J., Li Q., Lei X., Xia Y., Lai Y., Gong Q., Zhou D. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One. 2011;7 PubMed PMC

Luo C., Li Q., Xia Y., Lei X., Xue K., Yao Z., Lai Y., Liao W., Zhou D., Valdes-Sosa P.A. Resting state basal ganglia network in idiopathic generalized epilepsy. Hum. Brain Mapp. 2012;33:1279–1294. PubMed PMC

Maneshi M., Vahdat S., Fahoum F., Grova C., Gotman J. Specific resting-state brain networks in mesial temporal lobe epilepsy. Front. Neurol. 2014;5 PubMed PMC

McIntosh A.R., Lobaugh N.J. Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage. 2004;23:S250–S263. PubMed

Morgan V.L., Gore J.C., Abou-Khalil B. Functional epileptic network in left mesial temporal lobe epilepsy detected using resting fMRI. Epilepsy Res. 2010;88:168–178. PubMed PMC

Norden A.D., Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3:219–231. PubMed

Otte W.M., Dijkhuizen R.M., van Meer M.P., van der Hel W.S., Verlinde S.A., van Nieuwenhuizen O., Viergever M.A., Stam C.J., Braun K.P. Characterization of functional and structural integrity in experimental focal epilepsy: reduced network efficiency coincides with white matter changes. PLoS One. 2012;7 PubMed PMC

Pereira F.R.S., Alessio A., Sercheli M.S., Pedro T., Bilevicius E., Rondina J.M., Ozelo H.F.B., Castellano G., Covolan R.J.M., Damasceno B.P. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci. 2010;11:66. PubMed PMC

Ponten S.C., Bartolomei F., Stam C.J. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol. 2007;118:918–927. PubMed

Rektor I., Kuba R., Brázdil M. Interictal and ictal EEG activity in the basal ganglia: an SEEG study in patients with temporal lobe epilepsy. Epilepsia. 2002;43:253–262. PubMed

Rektor I., Kuba R., Brázdil M., Halámek J., Jurák P. Ictal and peri-ictal oscillations in the human basal ganglia in temporal lobe epilepsy. Epilepsy Behav. 2011;20:512–517. PubMed

Rektor I., Kuba R., Brázdil M., Chrastina J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012;25:56–59. PubMed

Rektor I., Tomčík J., Mikl M., Mareček R., Brázdil M., Rektorová I. Association between the basal ganglia and large-scale brain networks in epilepsy. Brain Topogr. 2013;26:355–362. PubMed

Rektor I., Doležalová I., Chrastina J., Jurák P., Halámek J., Baláž M., Brázdil M. High-frequency oscillations in the human anterior nucleus of the thalamus. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2016;9(4):629–631. PubMed

Richardson M.P. Large scale brain models of epilepsy: dynamics meets connectomics. J. Neurol. Neurosurg. Psychiatry. 2012:1238–1248. PubMed

Rubinov M., Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52:1059–1069. PubMed

Schindler K.A., Bialonski S., Horstmann M.-T., Elger C.E., Lehnertz K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos. 2008;18:33119. PubMed

Spencer S.S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–227. PubMed

Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–289. PubMed

Van Diessen E., Diederen S.J.H., Braun K.P.J., Jansen F.E., Stam C.J. Functional and structural brain networks in epilepsy: what have we learned? Epilepsia. 2013;54:1855–1865. PubMed

Van Diessen E., Zweiphenning W.J.E.M., Jansen F.E. Brain network organization in focal epilepsy: a systematic review and meta-analysis. PLoS One. 2014;9:1–21. PubMed PMC

Vlooswijk M.C.G., Jansen J.F.A., de Krom M.C., Majoie H.J.M., Hofman P.A.M., Backes W.H., Aldenkamp A.P. Functional MRI in chronic epilepsy: associations with cognitive impairment. Lancet Neurol. 2010;9:1018–1027. PubMed

Vlooswijk M.C.G., Vaessen M.J., Jansen J.F.A., de Krom M., Majoie H.J.M., Hofman P.A.M., Aldenkamp A.P., Backes W.H. Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology. 2011;77:938–944. PubMed

Voets N.L., Beckmann C.F., Cole D.M., Hong S., Bernasconi A., Bernasconi N. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012;135:2350–2357. PubMed

Watts D.J., Strogatz S.H. Collective dynamics of “small-world”networks. Nature. 1998;393:440–442. PubMed

Weissenbacher A., Kasess C., Gerstl F., Lanzenberger R., Moser E., Windischberger C. Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage. 2009;47:1408–1416. PubMed

Xia M., Wang J., He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...