Effects of glycerol supply and specific growth rate on methanol-free production of CALB by P. pastoris: functional characterisation of a novel promoter
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28130631
PubMed Central
PMC5380701
DOI
10.1007/s00253-017-8123-x
PII: 10.1007/s00253-017-8123-x
Knihovny.cz E-zdroje
- Klíčová slova
- Candida antarctica lipase B, Methanol-free, Pichia pastoris, Product formation kinetics, Secretion, Specific productivity,
- MeSH
- fermentace MeSH
- fungální proteiny genetika metabolismus MeSH
- glycerol metabolismus farmakologie MeSH
- kinetika MeSH
- lipasa genetika metabolismus MeSH
- methanol analýza MeSH
- Pichia genetika růst a vývoj metabolismus MeSH
- promotorové oblasti (genetika) * MeSH
- rekombinantní proteiny metabolismus MeSH
- techniky vsádkové kultivace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fungální proteiny MeSH
- glycerol MeSH
- lipasa MeSH
- lipase B, Candida antarctica MeSH Prohlížeč
- methanol MeSH
- rekombinantní proteiny MeSH
As Pichia pastoris (syn. Komagataella sp.) yeast can secrete pure recombinant proteins at high rates, it is a desirable production system. The function of a novel synthetic variant of the AOX1 promoter was characterised comprehensively using a strain secreting Candida antarctica lipase B (CALB) as a model. A new time-saving approach was introduced to determine, in only one experiment, the hitherto unknown relationship between specific product formation rate (q p) and specific growth rate (μ). Tight control of recombinant protein formation was possible in the absence of methanol, while using glycerol as a sole carbon/energy source. CALB was not synthesised during batch cultivation in excess glycerol (>10 g l-1) and at a growth rate close to μ max (0.15 h-1). Between 0.017 and 0.115 h-1 in glycerol-limited fedbatch cultures, basal levels of q p > 0.4 mg g-1 h-1 CALB were reached, independent of the μ at which the culture grew. At μ > 0.04 h-1, an elevated q p occurred temporarily during the first 20 h after changing to fedbatch mode and decreased thereafter to basal. In order to accelerate the determination of the q p(μ) relationship (kinetics of product formation), the entire μ range was covered in a single fedbatch experiment. By linearly increasing and decreasing glycerol addition rates, μ values were repeatedly shifted from 0.004 to 0.074 h-1 and vice versa. Changes in q p were related to changes in μ. A rough estimation of μ range suitable for production was possible in a single fedbatch, thus significantly reducing the experimental input over previous approaches comprising several experiments.
Zobrazit více v PubMed
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology-improving cell factory performance. Metab Eng. 2014;24:38–60. doi: 10.1016/j.ymben.2014.03.007. PubMed DOI
Barrigon JM, Valero F, Montesinos JL. A macrokinetic model-based comparative meta-analysis of recombinant protein production by Pichia pastoris under A0X1 promoter. Biotechnol Bioeng. 2015;112:1132–1145. doi: 10.1002/bit.25518. PubMed DOI
Brierley RA, Bussineau C, Kosson R, Melton A, Siegel RS. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme. Ann N Y Acad Sci. 1990;589:350–362. doi: 10.1111/j.1749-6632.1990.tb24257.x. PubMed DOI
Buchetics M, Dragosits M, Maurer M, Rebnegger C, Porro D, Sauer M, Gasser B, Mattanovich D. Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth. Biotechnol Bioeng. 2011;108:2403–2412. doi: 10.1002/bit.23198. PubMed DOI
Capone S, Horvat J, Herwig C, Spadiut O. Development of a mixed feed strategy for a recombinant Pichia pastoris strain producing with a de-repression promoter. Microb Cell Factories. 2015;14:Artn 101. doi: 10.1186/s12934-015-0292-7. PubMed DOI PMC
Carnicer M, Baumann K, Toplitz I, Sanchez-Ferrando F, Mattanovich D, Ferrer P, Albiol J. Macromolecular and elemental composition analysis and extracellular metabolite balances of Pichia pastoris growing at different oxygen levels. Microb Cell Factories. 2009;8:Artn 65. doi: 10.1186/1475-2859-8-65. PubMed DOI PMC
Curvers S, Linneman J, Klauser T, Wandrey C, Takors R. Recombinant protein production with Pichia pastoris in continuous fermentation—kinetic analysis of growth and product formation. Chem Ing Tech. 2001;73:1615–1621. doi: 10.1002/1522-2640(200112)73:12<1615::AID-CITE1615>3.0.CO;2-6. DOI
d’Anjou MC, Daugulis AJ. A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng. 2001;72:1–11. doi: 10.1002/1097-0290(20010105)72:1<1::AID-BIT1>3.0.CO;2-T. PubMed DOI
Dietzsch C, Spadiut O, Herwig C. A dynamic method based on the specific substrate uptake rate to set up a feeding strategy for Pichia pastoris. Microb Cell Factories. 2011;10:Artn 14. doi: 10.1186/1475-2859-10-14. PubMed DOI PMC
Dietzsch C, Spadiut O, Herwig C. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains. Microb Cell Factories. 2011;10:Artn 85. doi: 10.1186/1475-2859-10-85. PubMed DOI PMC
Egli T, Vandijken JP, Veenhuis M, Harder W, Fiechter A. Methanol metabolism in yeasts—regulation of the synthesis of catabolic enzymes. Arch Microbiol. 1980;124:115–121. doi: 10.1007/BF00427715. DOI
Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13:247–261. doi: 10.1016/0734-9750(95)00004-A. PubMed DOI
Hang HF, Chen W, Guo MJ, Chu J, Zhuang YP, Zhang SL. A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris. Korean J Chem Eng. 2008;25:1065–1069. doi: 10.1007/s11814-008-0174-3. DOI
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res. 2008;36(12):Artn 76. doi: 10.1093/nar/gkn369. PubMed DOI PMC
Hellwig S, Emde F, Raven NP, Henke M, van Der Logt P, Fischer R. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng. 2001;74:344–352. doi: 10.1002/bit.1125. PubMed DOI
Hesketh AR, Castrillo JI, Sawyer T, Archer DB, Oliver SG. Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol. 2013;97:9747–9762. doi: 10.1007/s00253-013-5186-1. PubMed DOI PMC
Hohenblum H, Gasser B, Maurer M, Borth N, Mattanovich D. Effects of gene dosage, promoters, and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol Bioeng. 2004;85:367–375. doi: 10.1002/bit.10904. PubMed DOI
Hyka P, Zullig T, Ruth C, Looser V, Meier C, Klein J, Melzoch K, Meyer HP, Glieder A, Kovar K. Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high cell density fed-batch cultures. Appl Environ Microbiol. 2010;76:4486–4496. doi: 10.1128/AEM.02475-09. PubMed DOI PMC
Invitrogen (2002) Pichia fermentation process guidelines. https://tools.thermofisher.com/content/sfs/manuals/pichiaferm_prot.pdf Accessed 26 December 2016
Jungo C, Rerat C, Marison IW, von Stockar U. Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut+ strain. Enzym Microb Technol. 2006;39:936–944. doi: 10.1016/j.enzmictec.2006.01.027. DOI
Khasa YP, Khushoo A, Srivastava L, Mukherjee KJ. Kinetic studies of constitutive human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression in continuous culture of Pichia pastoris. Biotechnol Lett. 2007;29:1903–1908. doi: 10.1007/s10529-007-9473-8. PubMed DOI
Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K. High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng. 2000;90:280–288. doi: 10.1016/S1389-1723(00)80082-1. PubMed DOI
Kovar K, Looser V, Hyka P, Merseburger T, Meier C. Recombinant yeast technology at the cutting edge: robust tools for both designed catalysts and new biologicals. Chimia. 2010;64:813–818. doi: 10.2533/chimia.2010.813. PubMed DOI
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv. 2015;33:1177–1193. doi: 10.1016/j.biotechadv.2015.05.008. PubMed DOI
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One. 2012;7:e37915. doi: 10.1371/journal.pone.0037915. PubMed DOI PMC
Maurer M, Kuehleitner M, Gasser B, Mattanovich D. Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Factories. 2006;5:Artn 37. doi: 10.1186/1475-2859-5-37. PubMed DOI PMC
Mellitzer A, Ruth C, Gustafsson C, Welch M, Birner-Grunberger R, Weis R, Purkarthofer T, Glieder A. Synergistic modular promoter and gene optimization to push cellulase secretion by Pichia pastoris beyond existing benchmarks. J Biotechnol. 2014;191:187–195. doi: 10.1016/j.jbiotec.2014.08.035. PubMed DOI
Morawski B, Lin ZL, Cirino PC, Joo H, Bandara G, Arnold FH. Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Eng. 2000;13:377–384. doi: 10.1093/protein/13.5.377. PubMed DOI
Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One. 2012;7:e39720. doi: 10.1371/journal.pone.0039720. PubMed DOI PMC
Ohya T, Ohyama M, Kobayashi K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol Bioeng. 2005;90(7):876–887. doi: 10.1002/bit.20507. PubMed DOI
Paulova L, Hyka P, Branska B, Melzoch K, Kovar K. Use of a mixture of glucose and methanol as substrates for the production of recombinant trypsinogen in continuous cultures with Pichia pastoris Mut(+) J Biotechnol. 2012;157:180–188. doi: 10.1016/j.jbiotec.2011.10.010. PubMed DOI
Potgieter TI, Kersey SD, Mallem MR, Nylen AC, d’Anjou M. Antibody expression kinetics in glycoengineered Pichia pastoris. Biotechnol Bioeng. 2010;106:918–927. doi: 10.1002/bit.22756. PubMed DOI
Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Factories. 2013;12:Artn5. doi: 10.1186/1475-2859-12-5. PubMed DOI PMC
Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, Mattanovich D. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response. Biotechnol J. 2014;9:511–525. doi: 10.1002/biot.201300334. PubMed DOI PMC
Ruth C, Zuellig T, Mellitzer A, Weis R, Looser V, Kovar K, Glieder A. Variable production windows for porcine trypsinogen employing synthetic inducible promoter variants in Pichia pastoris. Syst Synth Biol. 2010;4:181–191. doi: 10.1007/s11693-010-9057-0. PubMed DOI PMC
Spadiut O, Herwig C. Dynamics in bioprocess development for Pichia pastoris. Bioengineered. 2014;5:401–404. doi: 10.4161/bioe.36152. PubMed DOI PMC
Spadiut O, Rittmann S, Dietzsch C, Herwig C. Dynamic process conditions in bioprocess development. Eng Life Sci. 2013;13:88–101. doi: 10.1002/elsc.201200026. DOI
Spadiut O, Zalai D, Dietzsch C, Herwig C. Quantitative comparison of dynamic physiological feeding profiles for recombinant protein production with Pichia pastoris. Bioprocess Biosyst Eng. 2014;37:1163–1172. doi: 10.1007/s00449-013-1087-z. PubMed DOI PMC
Stadlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol. 2010;150:519–529. doi: 10.1016/j.jbiotec.2010.09.957. PubMed DOI
Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol. 2013;30:385–404. doi: 10.1016/j.nbt.2012.11.010. PubMed DOI
Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. Acs Syn Biol. 2016;5:172–186. doi: 10.1021/acssynbio.5b00199. PubMed DOI
Wu D, Chu J, Hao YY, Wang YH, Zhuang YP, Zhang SL. Influence of specific growth rate on specific productivity and intermolecular disulfide bond of recombinant protein produced by a Pichia pastoris Mut(+) strain. J Biotechnol. 2010;150:S540–S540.
Zalai D, Dietzsch C, Herwig C, Spadiut O. A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding. Biotechnol Prog. 2012;28:878–886. doi: 10.1002/btpr.1551. PubMed DOI
Zhang W, Sinha J, Smith LA, Inan M, Meagher MM. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol Prog. 2005;21:386–393. doi: 10.1021/bp049811n. PubMed DOI
Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris