Body size and lower limb posture during walking in humans
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28192522
PubMed Central
PMC5305206
DOI
10.1371/journal.pone.0172112
PII: PONE-D-16-20414
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické modely MeSH
- biomechanika MeSH
- chůze (způsob) fyziologie MeSH
- chůze fyziologie MeSH
- dolní končetina fyziologie MeSH
- dospělí MeSH
- hlezenní kloub fyziologie MeSH
- index tělesné hmotnosti MeSH
- kolenní kloub fyziologie MeSH
- koleno fyziologie MeSH
- kotník fyziologie MeSH
- kyčelní kloub fyziologie MeSH
- lidé MeSH
- lineární modely MeSH
- mladý dospělý MeSH
- postura těla fyziologie MeSH
- rozsah kloubních pohybů fyziologie MeSH
- velikost těla fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
We test whether locomotor posture is associated with body mass and lower limb length in humans and explore how body size and posture affect net joint moments during walking. We acquired gait data for 24 females and 25 males using a three-dimensional motion capture system and pressure-measuring insoles. We employed the general linear model and commonality analysis to assess the independent effect of body mass and lower limb length on flexion angles at the hip, knee, and ankle while controlling for sex and velocity. In addition, we used inverse dynamics to model the effect of size and posture on net joint moments. At early stance, body mass has a negative effect on knee flexion (p < 0.01), whereas lower limb length has a negative effect on hip flexion (p < 0.05). Body mass uniquely explains 15.8% of the variance in knee flexion, whereas lower limb length uniquely explains 5.4% of the variance in hip flexion. Both of the detected relationships between body size and posture are consistent with the moment moderating postural adjustments predicted by our model. At late stance, no significant relationship between body size and posture was detected. Humans of greater body size reduce the flexion of the hip and knee at early stance, which results in the moderation of net moments at these joints.
CASRI Sports Research Institute of Czech Armed Forces Prague Czech Republic
Department of Anthropology Hunter College New York New York United States of America
Zobrazit více v PubMed
Taylor CR, Heglund NC, McMahon TA, Looney TR. Energetic cost of generating muscular force during running: a comparison of large and small animals. Journal of Experimental Biology. 1980;86: 9–18.
Biewener AA. Scaling body support in mammals: limb posture and muscle mechanics. Science. 1989;245: 45–48. PubMed
Kram R, Taylor CR. Energetics of running: a new perspective. Nature. 1990;346: 265–267. 10.1038/346265a0 PubMed DOI
Roberts TJ, Chen MS, Taylor CR. Energetics of bipedal running. II. Limb design and running mechanics. Journal of Experimental Biology. 1998;201: 2753–2762. PubMed
Chang YH, Kram R. Metabolic cost of generating horizontal forces during human running. J Appl Physiol. 1999;86: 1657–1662. PubMed
Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. Journal of Applied Physiology. 2003;95: 172–183. 10.1152/japplphysiol.00944.2002 PubMed DOI
Biewener AA, Farley CT, Roberts TJ, Temaner M. Muscle mechanical advantage of human walking and running: implications for energy cost. Journal of Applied Physiology. 2004;97: 2266–2274. 10.1152/japplphysiol.00003.2004 PubMed DOI
Pontzer H. A new model predicting locomotor cost from limb length via force production. Journal of Experimental Biology. 2005;208: 1513–1524. 10.1242/jeb.01549 PubMed DOI
Pontzer H, Raichlen DA, Sockol MD. The metabolic cost of walking in humans, chimpanzees, and early hominins. Journal of Human Evolution. 2009;56: 43–54. 10.1016/j.jhevol.2008.09.001 PubMed DOI
Pandy MG, Andriacchi TP. Muscle and Joint Function in Human Locomotion. Annual Review of Biomedical Engineering. 2010;12: 401–433. 10.1146/annurev-bioeng-070909-105259 PubMed DOI
Pontzer H. A unified theory for the energy cost of legged locomotion. Biology Letters. 2016;12: 20150935 10.1098/rsbl.2015.0935 PubMed DOI PMC
Pandolf KB, Haisman MF, Goldman RF. Metabolic energy expenditure and terrain coefficients for walking on snow. Ergonomics. 1976;19: 683–690. 10.1080/00140137608931583 PubMed DOI
Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G. The energy cost of walking or running on sand. European journal of applied physiology and occupational physiology. 1992;65: 183–187. PubMed
Lejeune TM, Willems PA, Heglund NC. Mechanics and energetics of human locomotion on sand. Journal of Experimental Biology. 1998;201: 2071–2080. PubMed
Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme uphill and downhill slopes. Journal of applied physiology. 2002;93: 1039–1046. 10.1152/japplphysiol.01177.2001 PubMed DOI
Biewener AA. Mammalian terrestrial locomotion and size. Bioscience. 1989;39: 776–783.
Witte H, Preuschoft H, Recknagel S. Human body proportions explained on the basis of biomechanical principles. Zeitschrift für Morphologie und Anthropologie. 1991;78: 407 PubMed
Steudel-Numbers KL, Tilkens MJ. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. Journal of Human Evolution. 2004;47: 95–109. 10.1016/j.jhevol.2004.06.002 PubMed DOI
Steudel-Numbers KL, Weaver TD, Wall-Scheffler CM. The evolution of human running: Effects of changes in lower-limb length on locomotor economy. Journal of Human Evolution. 2007;53: 191–196. 10.1016/j.jhevol.2007.04.001 PubMed DOI
Pontzer H. Effective limb length and the scaling of locomotor cost in terrestrial animals. Journal of Experimental Biology. 2007;210: 1752–1761. 10.1242/jeb.002246 PubMed DOI
Hoyt DF, Wickler SJ, Cogger EA. Time of contact and step length: the effect of limb length, running speed, load carrying and incline. Journal of Experimental Biology. 2000;203: 221 PubMed
Hora M, Sladek V. Influence of lower limb configuration on walking cost in Late Pleistocene humans. Journal of Human Evolution. 2014;67: 19–32. 10.1016/j.jhevol.2013.09.011 PubMed DOI
Scholz MN, Bobbert MF, van Soest AJ, Clark JR, van Heerden J. Running biomechanics: shorter heels, better economy. Journal of Experimental Biology. 2008;211: 3266–3271. 10.1242/jeb.018812 PubMed DOI
Gregory WK. Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Annals of the New York Academy of Sciences. 1912;22: 267–294.
Heglund NC, Taylor CR. Speed, stride frequency and energy cost per stride: how do they change with body size and gait? Journal of Experimental Biology. 1988;138: 301–318. PubMed
Biewener AA. Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. Journal of Experimental Biology. 1983;105: 147–171. PubMed
Biewener AA. Biomechanical consequences of scaling. Journal of Experimental Biology. 2005;208: 1665–1676. 10.1242/jeb.01520 PubMed DOI
Polk JD. Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. Journal of Experimental Biology. 2002;205: 3399–3412. PubMed
Patel BA, Horner AM, Thompson NE, Barrett L, Henzi SP. Ontogenetic Scaling of Fore- and Hind Limb Posture in Wild Chacma Baboons (Papio hamadryas ursinus). PLoS ONE. 2013;8: e71020 10.1371/journal.pone.0071020 PubMed DOI PMC
Day LM, Jayne BC. Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). J Exp Biol. 2007;210: 642–654. 10.1242/jeb.02703 PubMed DOI
Ren L, Butler M, Miller C, Paxton H, Schwerda D, Fischer MS, et al. The movements of limb segments and joints during locomotion in African and Asian elephants. Journal of Experimental Biology. 2008;211: 2735–2751. 10.1242/jeb.018820 PubMed DOI
Hora M, Sládek V, Soumar L, Stráníková K, Michálek T. Influence of body mass and lower limb length on knee flexion angle during walking in humans. Folia Zoologica. 2012;61: 330–339.
DeVita P, Hortobágyi T. Obesity is not associated with increased knee joint torque and power during level walking. Journal of Biomechanics. 2003;36: 1355–1362. PubMed
Gushue DL, Houck J, Lerner AL. Effects of Childhood Obesity on Three-Dimensional Knee Joint Biomechanics During Walking. Journal of Pediatric Orthopaedics. 2005;25: 763–768. PubMed
Gruss LT. Limb length and locomotor biomechanics in the genus Homo: An experimental study. American journal of physical anthropology. 2007;134: 106–116. 10.1002/ajpa.20642 PubMed DOI
Spyropoulos P, Pisciotta JC, Pavlou KN, Cairns MA, Simon SR. Biomechanical gait analysis in obese men. Archives of physical medicine and rehabilitation. 1991;72: 1065 PubMed
Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Medicine & Science in Sports & Exercise. 2007;39: 1632–1641. PubMed
Lai PPK, Leung AKL, Li ANM, Zhang M. Three-dimensional gait analysis of obese adults. Clinical Biomechanics. 2008;23, Supplement 1: S2–S6. PubMed
Hortobágyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol. 2011;111: 1391–1399. 10.1152/japplphysiol.00291.2011 PubMed DOI PMC
Kerrigan DC, Todd MK, Della Croce U. Gender differences in joint biomechanics during walking: normative study in young adults. American journal of physical medicine & rehabilitation. 1998;77: 2–7. PubMed
Cho SH, Park JM, Kwon OY. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clinical Biomechanics. 2004;19: 145–152. 10.1016/j.clinbiomech.2003.10.003 PubMed DOI
Hurd WJ, Chmielewski TL, Axe MJ, Davis I, Snyder-Mackler L. Differences in normal and perturbed walking kinematics between male and female athletes. Clinical Biomechanics. 2004;19: 465–472. 10.1016/j.clinbiomech.2004.01.013 PubMed DOI
Kettelkamp DB, Johnson RJ, Smidt GL, Chao EY, Walker M. An electrogoniometric study of knee motion in normal gait. The Journal of bone and joint surgery American volume. 1970;52: 775–790. PubMed
Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age. Journal of rehabilitation research and development. 1994;31: 199–213. PubMed
Boyer KA, Beaupre GS, Andriacchi TP. Gender differences exist in the hip joint moments of healthy older walkers. Journal of biomechanics. 2008;41: 3360–3365. 10.1016/j.jbiomech.2008.09.030 PubMed DOI
Røislien J, Skare Ø, Gustavsen M, Broch NL, Rennie L, Opheim A. Simultaneous estimation of effects of gender, age and walking speed on kinematic gait data. Gait & Posture. 2009;30: 441–445. PubMed
Stansfield BW, Hillman SJ, Hazlewood ME, Lawson AA, Mann AM, Loudon IR, et al. Sagittal joint kinematics, moments, and powers are predominantly characterized by speed of progression, not age, in normal children. Journal of Pediatric Orthopaedics. 2001;21: 403–411. PubMed
van der Linden ML, Kerr AM, Hazlewood ME, Hillman SJ, Robb JE. Kinematic and kinetic gait characteristics of normal children walking at a range of clinically relevant speeds. Journal of Pediatric Orthopaedics. 2002;22: 800 PubMed
Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from gait speed. Gait & Posture. 2003;17: 106–112. PubMed
Hanlon M, Anderson R. Prediction methods to account for the effect of gait speed on lower limb angular kinematics. Gait & Posture. 2006;24: 280–287. PubMed
van Hedel HJA, Tomatis L, Müller R. Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait & Posture. 2006;24: 35–45. PubMed
Stoquart G, Detrembleur C, Lejeune T. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking. Neurophysiologie Clinique/Clinical Neurophysiology. 2008;38: 105–116. 10.1016/j.neucli.2008.02.002 PubMed DOI
Chung M-J, Wang M-JJ. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait & Posture. 2010;31: 131–135. PubMed
Redl C, Gfoehler M, Pandy MG. Sensitivity of muscle force estimates to variations in muscle–tendon properties. Human Movement Science. 2007;26: 306–319. 10.1016/j.humov.2007.01.008 PubMed DOI
Winter DA. Biomechanics and motor control of human movement. New Jersey: John Wiley & Sons; 2009.
Yoshioka S, Nagano A, Hay DC, Fukashiro S. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task. BioMedical Engineering OnLine. 2009;8: 27 10.1186/1475-925X-8-27 PubMed DOI PMC
de David AC, Carpes FP, Stefanyshyn D. Effects of changing speed on knee and ankle joint load during walking and running. J Sports Sci. 2015;33: 391–397. 10.1080/02640414.2014.946074 PubMed DOI
Whittlesey S, Robertson G. Two-Dimensional Inverse Dynamics Research methods in biomechanics. 2nd ed Champaign: Human Kinetics; 2013.
Alexander R. A model of bipedal locomotion on compliant legs. Philosophical Transactions: Biological Sciences. 1992;338: 189–198. PubMed
McGeer T. Passive Dynamic Walking. The International Journal of Robotics Research. 1990;9: 62–82.
Pandy MG, Zajac FE. Optimal muscular coordination strategies for jumping. Journal of Biomechanics. 1991;24: 1–10. PubMed
Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait and Posture. 2003;17: 159–169. PubMed
Bresler B, Frankel JP. The forces and moments in the leg during level walking. Transactions of the American Society of Mechanical Engineers. 1950;72: 27–36.
Gruben KG, Boehm WL. Force direction pattern stabilizes sagittal plane mechanics of human walking. Human Movement Science. 2012;31: 649–659. 10.1016/j.humov.2011.07.006 PubMed DOI
Bräuer G. Osteometrie In: Knussmann R, editor. Anthropologie: Handbuch der vergleichenden Biologie des Menschen. Stuttgart: Fischer Verlag; 1988. pp. 160–232.
Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait & Posture. 2007;26: 128–134. PubMed
Ebbeling CJ, Hamill J, Crussemeyer JA. Lower Extremity Mechanics and Energy Cost of Walking in High-Heeled Shoes. Journal of Orthopaedic & Sports Physical Therapy. 1994;19: 190–196. PubMed
Hennig EM, Milani TL. In-Shoe Pressure Distribution for Running in Various Types of Footwear. Journal of Applied Biomechanics. 1995;11: 299–310.
Stefanyshyn DJ, Nigg BM, Fisher V, O’Flynn B, Wen Liu. The Influence of High Heeled Shoes on Kinematics, Kinetics, and Muscle EMG of Normal Female Gait. Journal of Applied Biomechanics. 2000;16: 309.
Trinkaus E, Shang H. Anatomical evidence for the antiquity of human footwear: Tianyuan and Sunghir. Journal of Archaeological Science. 2008;35: 1928–1933.
Cappozzo A, Catani F, Della Croce U, Leardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clinical Biomechanics. 1995;10: 171–178. PubMed
Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. Transactions of the ASME, Journal of Biomechanical Engineering. 1983;105: 136–143. PubMed
Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics. 2002;35: 543–548. PubMed
Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. Journal of Biomechanics. 2005;38: 107–116. 10.1016/j.jbiomech.2004.03.009 PubMed DOI
Begon M, Monnet T, Lacouture P. Effects of movement for estimating the hip joint centre. Gait & Posture. 2007;25: 353–359. PubMed
Zeni JA Jr., Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait & Posture. 2008;27: 710–714. PubMed PMC
Peters M. Footedness: Asymmetries in Foot Preference and Skill and Neuropsychological Assessment of Foot Movement. Psychological Bulletin. 1988;103: 179–192. PubMed
Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait & Posture. 2000;12: 34–45. PubMed
Maus HM, Lipfert S, Gross M, Rummel J, Seyfarth A. Upright human gait did not provide a major mechanical challenge for our ancestors. Nature Communications. 2010;1: 70 10.1038/ncomms1073 10.1038/ncomms1073 PubMed DOI
Holliday TW. Brachial and crural indices of European Late Upper Paleolithic and Mesolithic humans. Journal of human evolution. 1999;36: 549–566. 10.1006/jhev.1998.0289 PubMed DOI
Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. Journal of Biomechanics. 2006;39: 2438–2444. 10.1016/j.jbiomech.2005.07.021 PubMed DOI
Kristianslund E, Krosshaug T, Bogert van den AJ. Effect of low pass filtering on joint moments from inverse dynamics: Implications for injury prevention. Journal of Biomechanics. 2012;45: 666–671. 10.1016/j.jbiomech.2011.12.011 PubMed DOI
Sládek V, Berner M, Galeta P, Friedl L, Kudrnová Š. Technical note: The effect of midshaft location on the error ranges of femoral and tibial cross-sectional parameters. American Journal of Physical Anthropology. 2010;141: 325–332. 10.1002/ajpa.21153 PubMed DOI
Ferrari A, Benedetti MG, Pavan E, Frigo C, Bettinelli D, Rabuffetti M, et al. Quantitative comparison of five current protocols in gait analysis. Gait & Posture. 2008;28: 207–216. PubMed
Duffell LD, Hope N, McGregor AH. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon’s plug-in gait. Proceedings of the IMechE. 2014;228: 206–210. PubMed
Newton RG, Spurrell DJ. A Development of Multiple Regression for the Analysis of Routine Data. Journal of the Royal Statistical Society Series C (Applied Statistics). 1967;16: 51–64.
Mood AM. Macro-analysis of the American educational system. Operations Research. 1969;17: 770–784.
Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol Evol. 2014;5: 320–328.
Błaszczyk JW, Plewa M, Cieślinska-Swider J, Bacik B, Zahorska-Markiewicz B, Markiewicz A. Impact of excess body weight on walking at the preferred speed. Acta Neurobiol Exp (Wars). 2011;71: 528–540. PubMed
Harding GT, Hubley-Kozey CL, Dunbar MJ, Stanish WD, Astephen Wilson JL. Body mass index affects knee joint mechanics during gait differently with and without moderate knee osteoarthritis. Osteoarthritis and Cartilage. 2012;20: 1234–1242. 10.1016/j.joca.2012.08.004 PubMed DOI
Perry J, Burnfield JM. Gait analysis: normal and pathological function. 2nd ed Thorofare: SLACK incorporated; 2010.
Pandy MG. Computer Modeling and Simulation of Human Movement. Annual Review of Biomedical Engineering. 2001;3: 245–273. 10.1146/annurev.bioeng.3.1.245 PubMed DOI
Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking Part I: introduction to concepts, power transfer, dynamics and simulations. Gait & Posture. 2002;16: 215–232. PubMed
Erdemir A, McLean S, Herzog W, van den Bogert AJ. Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics. 2007;22: 131–154. 10.1016/j.clinbiomech.2006.09.005 PubMed DOI
Sellers WI, Pataky TC, Caravaggi P, Crompton RH. Evolutionary Robotic Approaches in Primate Gait Analysis. Int J Primatol. 2010;31: 321–338.
Foster AD, Raichlen DA, Pontzer H. Muscle force production during bent-knee, bent-hip walking in humans. Journal of Human Evolution. 2013;65: 294–302. 10.1016/j.jhevol.2013.06.012 PubMed DOI
Warrener AG, Lewton KL, Pontzer H, Lieberman DE. A Wider Pelvis Does Not Increase Locomotor Cost in Humans, with Implications for the Evolution of Childbirth. PLOS ONE. 2015;10: e0118903 10.1371/journal.pone.0118903 PubMed DOI PMC
Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc. 1990;22: 357–369. PubMed
Edwards WB, Gillette JC, Thomas JM, Derrick TR. Internal femoral forces and moments during running: Implications for stress fracture development. Clinical Biomechanics. 2008;23: 1269–1278. 10.1016/j.clinbiomech.2008.06.011 PubMed DOI
Derrick TR, Edwards WB, Fellin RE, Seay JF. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. Journal of Biomechanics. 2016;49: 429–435. 10.1016/j.jbiomech.2016.01.003 PubMed DOI
Edwards WB, Miller RH, Derrick TR. Femoral strain during walking predicted with muscle forces from static and dynamic optimization. Journal of Biomechanics. 2016;49: 1206–1213. 10.1016/j.jbiomech.2016.03.007 PubMed DOI