Impact of gut hormone FGF-19 on type-2 diabetes and mitochondrial recovery in a prospective study of obese diabetic women undergoing bariatric surgery
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28202005
PubMed Central
PMC5311731
DOI
10.1186/s12916-017-0797-5
PII: 10.1186/s12916-017-0797-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bariatric surgery, FGF-19, Gut hormone, Mitochondria, Obesity, Type-2 diabetes recovery,
- MeSH
- bariatrická chirurgie metody MeSH
- diabetes mellitus 2. typu metabolismus patologie MeSH
- dospělí MeSH
- fibroblastové růstové faktory metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- obezita metabolismus patologie terapie MeSH
- prospektivní studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- FGF19 protein, human MeSH Prohlížeč
- fibroblastové růstové faktory MeSH
BACKGROUND: The ileal-derived hormone, fibroblast growth factor 19 (FGF-19), may promote weight loss and facilitate type-2 diabetes mellitus remission in bariatric surgical patients. We investigated the effect of different bariatric procedures on circulating FGF-19 levels and the resulting impact on mitochondrial health in white adipose tissue (AT). METHODS: Obese and type-2 diabetic women (n = 39, BMI > 35 kg/m2) undergoing either biliopancreatic diversion (BPD), laparoscopic greater curvature plication (LGCP), or laparoscopic adjustable gastric banding (LAGB) participated in this ethics approved study. Anthropometry, biochemical, clinical data, serum, and AT biopsies were collected before and 6 months after surgery. Mitochondrial gene expression in adipose biopsies and serum FGF-19 levels were then assessed. RESULTS: All surgeries led to metabolic improvements with BPD producing the greatest benefits on weight loss (↓30%), HbA1c (↓28%), and cholesterol (↓25%) reduction, whilst LGCP resulted in similar HbA1c improvements (adjusted for BMI). Circulating FGF-19 increased in both BPD and LGCP (χ2(2) = 8.088; P = 0.018), whilst, in LAGB, FGF-19 serum levels decreased (P = 0.028). Interestingly, circulating FGF-19 was inversely correlated with mitochondrial number in AT across all surgeries (n = 39). In contrast to LGCP and LAGB, mitochondrial number in BPD patients corresponded directly with changes in 12 of 14 mitochondrial genes assayed (P < 0.01). CONCLUSIONS: Elevated serum FGF-19 levels post-surgery were associated with improved mitochondrial health in AT and overall diabetic remission. Changes in circulating FGF-19 levels were surgery-specific, with BPD producing the best metabolic outcomes among the study procedures (BPD > LGCP > LAGB), and highlighting mitochondria in AT as a potential target of FGF-19 during diabetes remission.
Aston Medical Research Institute Aston Medical School Aston University Birmingham UK
Department of Biomedical Sciences University of Westminster London W1W 6UW UK
Derby Teaching Hospitals NHS Foundation Trust Derby UK
Institute of Endocrinology Prague Czech Republic
OB Clinic Prague Czech Republic
School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK
Warwick Medical School University of Warwick Coventry UK
Warwickshire Institute for the Study of Diabetes Endocrinology and Metabolism NHS Trust Coventry UK
Zobrazit více v PubMed
Gibby JT, Njeru DK, Cvetko ST, Merrill RM, Bikman BT, Gibby WA. Volumetric analysis of central body fat accurately predicts incidence of diabetes and hypertension in adults. BMC Obes. 2015;2:10. doi: 10.1186/s40608-015-0039-3. PubMed DOI PMC
Dennedy MC, Vidal-Puig A. An adipocentric view of the metabolic syndrome and cardiovascular disease. Curr Cardiovasc Risk Rep. 2014;8:379. doi: 10.1007/s12170-014-0379-4. DOI
Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23(9):435–43. doi: 10.1016/j.tem.2012.06.004. PubMed DOI PMC
Corkey BE, Shirihai O. Metabolic master regulators: sharing information among multiple systems. Trends Endocrinol Metab. 2012;23(12):594–601. doi: 10.1016/j.tem.2012.07.006. PubMed DOI PMC
Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J Clin Endocrinol Metab. 2014;99(2):E209–216. doi: 10.1210/jc.2013-3042. PubMed DOI PMC
Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17(4):491–506. doi: 10.1016/j.cmet.2013.03.002. PubMed DOI PMC
Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yoon G, Choi KM, Ko YG. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006;49(4):784–91. doi: 10.1007/s00125-006-0170-2. PubMed DOI
Wang T, Si Y, Shirihai OS, Si H, Schultz V, Corkey RF, Hu L, Deeney JT, Guo W, Corkey BE. Respiration in adipocytes is inhibited by reactive oxygen species. Obesity. 2010;18(8):1493–502. doi: 10.1038/oby.2009.456. PubMed DOI PMC
Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280(6):4617–26. doi: 10.1074/jbc.M411863200. PubMed DOI
Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7(1):45–56. doi: 10.1016/j.cmet.2007.10.013. PubMed DOI
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944–8. doi: 10.1038/nature04634. PubMed DOI
Bharadwaj MS, Tyrrell DJ, Leng I, Demons JL, Lyles MF, Carr JJ, Nicklas BJ, Molina AJ. Relationships between mitochondrial content and bioenergetics with obesity, body composition and fat distribution in healthy older adults. BMC Obes. 2015;2:40. doi: 10.1186/s40608-015-0070-4. PubMed DOI PMC
Soronen J, Laurila PP, Naukkarinen J, Surakka I, Ripatti S, Jauhiainen M, Olkkonen VM, Yki-Jarvinen H. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med Genomics. 2012;5:9. doi: 10.1186/1755-8794-5-9. PubMed DOI PMC
Zhou MC, Min R, Ji JJ, Zhang S, Tong AL, Xu JP, Li ZY, Zhang HB, Li YX. Analysis of association among clinical features and shorter leukocyte telomere length in mitochondrial diabetes with m.3243A > G mitochondrial DNA mutation. BMC Med Genet. 2015;16:92. doi: 10.1186/s12881-015-0238-2. PubMed DOI PMC
Scharfe C, Lu HH, Neuenburg JK, Allen EA, Li GC, Klopstock T, Cowan TM, Enns GM, Davis RW. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol. 2009;5(4):e1000374. doi: 10.1371/journal.pcbi.1000374. PubMed DOI PMC
Loo JH, Trejaut JA, Yen JC, Chen ZS, Ng WM, Huang CY, Hsu KN, Hung KH, Hsiao Y, Wei YH, et al. Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan. BMC Res Notes. 2014;7:223. doi: 10.1186/1756-0500-7-223. PubMed DOI PMC
Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Int Med. 2013;273(3):219–34. doi: 10.1111/joim.12012. PubMed DOI
Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76. doi: 10.1056/NEJMoa1200225. PubMed DOI PMC
Warkentin LM, Majumdar SR, Johnson JA, Agborsangaya CB, Rueda-Clausen CF, Sharma AM, Klarenbach SW, Karmali S, Birch DW, Padwal RS. Weight loss required by the severely obese to achieve clinically important differences in health-related quality of life: two-year prospective cohort study. BMC Med. 2014;12:175. doi: 10.1186/s12916-014-0175-5. PubMed DOI PMC
Yang J, Wang C, Cao G, Yang W, Yu S, Zhai H, Pan Y. Long-term effects of laparoscopic sleeve gastrectomy versus Roux-en-Y gastric bypass for the treatment of Chinese type 2 diabetes mellitus patients with body mass index 28-35 kg/m(2) BMC Surg. 2015;15:88. doi: 10.1186/s12893-015-0074-5. PubMed DOI PMC
Vage V, Sande VA, Mellgren G, Laukeland C, Behme J, Andersen JR. Changes in obesity-related diseases and biochemical variables after laparoscopic sleeve gastrectomy: a two-year follow-up study. BMC Surg. 2014;14:8. doi: 10.1186/1471-2482-14-8. PubMed DOI PMC
Batterham RL, Cummings DE. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. 2016;39(6):893–901. doi: 10.2337/dc16-0145. PubMed DOI PMC
Kyrou I, Weickert MO, Gharanei S, Randeva HS, Tan BK. Fibroblast growth factors: new insights, new targets in the management of diabetes. Minerva Endocrinol. 2016. Ahead of print. PubMed
Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, Wilson-Perez HE, Sandoval DA, Kohli R, Backhed F, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. doi: 10.1038/nature13135. PubMed DOI PMC
Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145(6):2594–603. doi: 10.1210/en.2003-1671. PubMed DOI
Sachdev S, Wang Q, Billington C, Connett J, Ahmed L, Inabnet W, Chua S, Ikramuddin S, Korner J. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg. 2016;26(5):957–65. doi: 10.1007/s11695-015-1834-0. PubMed DOI PMC
Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, Bekker JH, Ghatei MA, Bloom SR, Walters JR, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9. doi: 10.1210/en.2011-2145. PubMed DOI PMC
Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, Strodel WE, Still CD, Argyropoulos G. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36(7):1859–64. doi: 10.2337/dc12-2255. PubMed DOI PMC
Jansen PL, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, Schaap FG. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis. 2011;29(1):48–51. doi: 10.1159/000324128. PubMed DOI
Haluzikova D, Lacinova Z, Kavalkova P, Drapalova J, Krizova J, Bartlova M, Mraz M, Petr T, Vitek L, Kasalicky M, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obesity. 2013;21(7):1335–42. doi: 10.1002/oby.20208. PubMed DOI
Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154(1):9–15. doi: 10.1210/en.2012-1891. PubMed DOI PMC
Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT, Stefanovski D, Bergman RN, Wasserman DH, Schwartz MW. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Investig. 2013;123(11):4799–808. doi: 10.1172/JCI70710. PubMed DOI PMC
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741–7. doi: 10.1210/endo.143.5.8850. PubMed DOI
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9. doi: 10.1007/BF00280883. PubMed DOI
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. PubMed
Hsieh CJ, Weng SW, Liou CW, Lin TK, Chen JB, Tiao MM, Hung YT, Chen IY, Huang WT, Wang PW. Tissue-specific differences in mitochondrial DNA content in type 2 diabetes. Diabetes Res Clin Pract. 2011;92(1):106–10. doi: 10.1016/j.diabres.2011.01.010. PubMed DOI
Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–25. doi: 10.1016/S1534-5807(01)00055-7. PubMed DOI
Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004;15(11):5001–11. doi: 10.1091/mbc.E04-04-0294. PubMed DOI PMC
Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE, et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58(10):2303–15. doi: 10.2337/db07-1781. PubMed DOI PMC
Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in beta-cells. J Biol Chem. 2011;286(49):42534–44. doi: 10.1074/jbc.M111.242412. PubMed DOI PMC
Brookheart RT, Michel CI, Schaffer JE. As a matter of fat. Cell Metab. 2009;10(1):9–12. doi: 10.1016/j.cmet.2009.03.011. PubMed DOI PMC
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50. doi: 10.2337/diabetes.51.10.2944. PubMed DOI
Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278(19):17190–7. doi: 10.1074/jbc.M212754200. PubMed DOI
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46. doi: 10.1038/sj.emboj.7601963. PubMed DOI PMC
Vila M, Ruiz O, Belmonte M, Riesco M, Barcelo A, Perez G, Moreiro J, Salinas R. Changes in lipid profile and insulin resistance in obese patients after Scopinaro biliopancreatic diversion. Obes Surg. 2009;19(3):299–306. doi: 10.1007/s11695-008-9790-6. PubMed DOI
Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000;26(4):435–9. doi: 10.1038/82565. PubMed DOI
Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159–65. doi: 10.1038/nm.3760. PubMed DOI PMC
Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, Li X, Tang J, Lindberg R, Li Y. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci U S A. 2009;106(34):14379–84. doi: 10.1073/pnas.0907812106. PubMed DOI PMC
Reiche M, Bachmann A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm Metab Res. 2010;42(3):178–81. doi: 10.1055/s-0029-1243249. PubMed DOI
Mraz M, Lacinova Z, Kavalkova P, Haluzikova D, Trachta P, Drapalova J, Hanusova V, Haluzik M. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res. 2011;60(4):627–36. PubMed
The impact of metabolic endotoxaemia on the browning process in human adipocytes